Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
ocean non-equilibrium dynamics, artificial intelligence, “iEddy” AI large ocean model, operational oceanography
Document Type
Precision Support Technology for Marine Environment
Abstract
Ocean circulation exhibits complex multiscale dynamics, among which non-equilibrium processes, marked by transient behavior, strong perturbations, and pronounced nonlinearity, are of particular importance for maritime environmental support. However, limited observational capability has long constrained the study of subsurface non-equilibrium dynamics, leaving numerical models insufficiently validated and positioning this issue at the forefront of modern physical oceanography. Artificial intelligence (AI) offers a promising pathway to overcome this bottleneck. Built on this concept, the “iEddy” AI large ocean model can efficiently reconstruct high-resolution, high-accuracy three-dimensional temperature, salinity, and velocity from sea-surface remote sensing data, demonstrating strong capability in capturing non-equilibrium ocean currents and providing a new technological paradigm for marine environmental support. Nevertheless, observational gaps and the lack of a complete data-model-application loop remain major challenges. Developing an integrated “observation-assimilation-reconstruction-forecast-application” intelligent ocean environmental support system that enables a fully operational, automatically iterating workflow will be key to achieving transformative improvements in marine environmental support capabilities.
First page
85
Last Page
95
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1. Klein P, Lapeyre G, Siegelman L, et al. Ocean-scale interactions from space. Earth and Space Science, 2019, 6(5): 795-817.
2. 杜岩, 董晓龙, 蒋兴伟, 等. 全球海表流场多尺度结构观测卫星计划. 空间科学学报, 2022, 42(5): 849-861. Du Y, Dong X L, Jiang X W, et al. Ocean surface current multiscale observation mission. Chinese Journal of Space Science, 2022, 42(5): 849-861. (in Chinese)
3. Ferrari R, Wunsch C. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 2009, 41: 253-282.
4. McWilliams J C. Submesoscale currents in the ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2189): 20160117.
5. Dong J H, Fox-Kemper B, Zhang H, et al. The scale of submesoscale baroclinic instability globally. Journal of Physical Oceanography, 2020, 50(9): 2649-2667.
6. Vivant F, Siegelman L, Klein P, et al. Ocean submesoscale fronts induce diabatic heating and convective precipitation within storms. Communications Earth & Environment, 2025, 6: 69.
7. Cao H J, Fox-Kemper B, Jing Z Y. Submesoscale eddies in the upper ocean of the kuroshio extension from high-resolution simulation: Energy budget. Journal of Physical Oceanography, 2021, 51: 2181-2201.
8. Su Z, Wang J B, Klein P, et al. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 2018, 9: 775.
9. Yang H Y, Chen Z H, Sun S T, et al. Observations reveal intense air-sea exchanges over submesoscale ocean front. Geophysical Research Letters, 2024, 51(2): e2023GL106840.
10. Chelton D B, Schlax M G, Samelson R M, et al. Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity. Progress in Oceanography, 2019, 173: 256-350.
11. Archer M, Wang J B, Klein P, et al. Wide-swath satellite altimetry unveils global submesoscale ocean dynamics. Nature, 2025, 640: 691-696.
12. Chen G, Tang J W, Zhao C F, et al. Concept design of the “guanlan” science mission: China’s novel contribution to space oceanography. Frontiers in Marine Science, 2019, 6: 194.
13. Zheng Y H, Wu W, Wang M Y, et al. Different trajectory patterns of ocean surface drifters modulated by near-inertial oscillations. Environmental Research Letters, 2024, 19(10): 104060.
14. Du Y, Dong X L, Jiang X W, et al. Ocean surface current multiscale observation mission (OSCOM): Simultaneous measurement of ocean surface current, vector wind, and temperature. Progress in Oceanography, 2021, 193: 102531.
15. Bonjean F, Lagerloef G S E. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. Journal of Physical Oceanography, 2002, 32(10): 2938-2954.
16. Wang M Y, Xie S P, Shen S S P, et al. Rossby and Yanai modes of tropical instability waves in the equatorial Pacific Ocean and a diagnostic model for surface currents. Journal of Physical Oceanography, 2020, 50(10): 3009-3024.
17. Ubelmann C, Farrar J T, Chapron B, et al. A data-driven wind-to-current response function and application to ocean surface current estimates. Ocean Science, 2025, 21(6): 2915-2928.
18. Emery W J, Baldwin D, Matthews D. Maximum cross correlation automatic satellite image navigation and attitude corrections for open-ocean image navigation. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 33-42.
19. Rio M H, Santoleri R, Bourdalle-Badie R, et al. Improving the altimeter-derived surface currents using high-resolution sea surface temperature data: A feasability study based on model outputs. Journal of Atmospheric and Oceanic Technology, 2016, 33(12): 2769-2784.
20. Espeholt L, Agrawal S, Sønderby C, et al. Deep learning for twelve hour precipitation forecasts. Nature Communications, 2022, 13: 5145.
21. Lam R, Sanchez-Gonzalez A, Willson M, et al. Learning skillful medium-range global weather forecasting. Science, 2023, 382: 1416-1421.
22. Bi K F, Xie L X, Zhang H H, et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature, 2023, 619: 533-538.
23. Chen K, Han T, Ling F H, et al. The operational medium-range deterministic weather forecasting can be extended beyond a 10-day lead time. Communications Earth & Environment, 2025, 6: 518.
24. Sun X Y, Zhong X H, Xu X Z, et al. A data-to-forecast machine learning system for global weather. Nature Communications, 2025, 16: 6658.
25. Wang X, Wang R Z, Hu N Z, et al. XiHe: A data-driven model for global ocean eddy-resolving forecasting. (2024-10-22). https://arxiv.org/html/2402.02995.
26. Xiong W, Xiang Y F, Wu H, et al. AI-GOMS: Large AI-driven global ocean modeling system. (2023-08-06). https://arxiv.org/abs/2308.03152.
27. Cui Y Z, Wu R H, Zhang X, et al. Forecasting the eddying ocean with a deep neural network. Nature Communications, 2025, 16: 2268.
28. Yang N, Wang C, Zhao M H, et al. LangYa: Revolutionizing cross-spatiotemporal ocean forecasting. (2024-12-24). https://arxiv.org/abs/2412.18097.
29. 刘敬一, 过武宏, 崔宝龙, 等. 海洋环境适应性保障技术研究进展. 海洋通报, 2023, 42(4): 456-468. Liu J Y, Guo W H, Cui B L, et al. Advances in research on the development of marine environment adaptability guarantee technology. Marine Science Bulletin, 2023, 42(4): 456-468. (in Chinese)
30. 毛华斌, 吴园涛, 殷建平, 等. 海洋环境安全保障技术发展现状和展望. 中国科学院院刊, 2022, 37(7): 870-880. Mao H B, Wu Y T, Yin J P, et al. Development status and prospect of marine environmental security technology. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 870-880. (in Chinese)
31. 吴立新, 陈朝晖, 林霄沛, 等. “透明海洋”立体观测网构建. 科学通报, 2020, 65(25): 2654-2661. Wu L X, Chen Z H, Lin X P, et al. Building the integrated observational network of “Transparent Ocean”. Chinese Science Bulletin, 2020, 65(25): 2654-2661. (in Chinese)
Recommended Citation
ZHANG, Yuhong; DU, Yan; WANG, Tianyu; WANG, Minyang; DUAN, Qin; LI, Xinlong; ZHENG, Yuhang; XIA, Yifan; TANG, Shilin; LI, Yineng; and YIN, Jianping
(2026)
"Frontiers in ocean non-equilibrium dynamics and challenges in operational oceanography application,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 41
:
Iss.
1
, Article 8.
DOI: https://doi.org/10.3724/j.issn.1000-3045.20251215009
Available at:
https://bulletinofcas.researchcommons.org/journal/vol41/iss1/8
Included in
Environmental Chemistry Commons, Environmental Monitoring Commons, Marine Biology Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, Science and Technology Policy Commons