Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
AI for Science (AI4S), scientific database, development autonomy, open source and open innovation, standardized management
Document Type
Policy & Management Research
Abstract
With the rapid emergence of research intelligence driven by big data and artificial intelligence (AI), high-quality, openly shared scientific databases have become a strategic focal point for scientific innovation and enhancing technological competitiveness. Major countries around the world are increasingly recognizing the foundational role of scientific databases in advancing basic research. While continuously strengthening their own scientific data infrastructure through a series of initiatives, they have simultaneously imposed restrictions and suppression on the development of AI technologies in China, including those involving research data. Against this backdrop, building an autonomous and controllable scientific data ecosystem to support research intelligence is of great significance for unlocking the potential of China’s scientific data, ensuring national research security, and achieving a leap in independent innovation capacity. This study reviews international experiences in constructing databases that support research intelligence, analyzes the current status and challenges of scientific database development in China—including mismatches between the quantity and quality of data storage, insufficient openness and sharing of databases, inadequate coordination within the policy support system, and an underdeveloped database application ecosystem. Based on these findings, the study proposes strategies for strengthening China’s scientific data ecosystem, including enhancing top-level design and government support, promoting open-source and standardized management, fostering diverse collaborations, and facilitating integration with industrial applications.
First page
194
Last Page
204
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1. 郑令晗, 李晨珂. 面向AI4S的数据要素供给:价值取向、路径选择与风险控制. 图书与情报, 2024, (3): 81-89. Zheng L H, Li C K. Data element supply for AI4S: Value proposition, path choice and risk control. Library and Information, 2024, (3): 81-89. (in Chinese)
2. 廖方宇, 汪洋, 曹荣强, 等. 第五科研范式下新型科研信息化基础平台架构与关键技术. 中国科学院院刊, 2024, 39(12): 2048-2059. Liao F Y, Wang Y, Cao R Q, et al. Architecture and key technologies of new research informatization infrastructure platform under the fifth research paradigm. Bulletin of Chinese Academy of Sciences, 2024, 39(12): 2048-2059. (in Chinese)
3. 王炼. 美国联邦政府科学数据管理政策及实践. 全球科技经济瞭望, 2018, 33(7): 47-51. Wang L. Policies and practices on scientific data management by US federal government. Global Science, Technology and Economy Outlook, 2018, 33(7): 47-51. (in Chinese)
4. 刘思彤, 游玎怡, 陈光, 等. 科研机构数据管理体系构建研究——来自NIH和CNRS的经验启示. 全球科技经济瞭望, 2022, 37(6): 33-41. Liu S T, You D Y, Chen G, et al. Research on data management system construction of research institutes: Experience from NIH and CNRS. Global Science, Technology and Economy Outlook, 2022, 37(6): 33-41. (in Chinese)
5. 彭鑫, 邓仲华. 数据密集型科研环境下的科研数据管理框架研究. 数字图书馆论坛, 2017, 13(7): 61-67. Peng X, Deng Z H. Study of research data management model under the data-intensive scientific environment. Digital Library Forum, 2017, 13(7): 61-67. (in Chinese)
6. 卢祖丹. 国家科学数据共享服务平台运行绩效评价研究. 中国科技论坛, 2024, (5): 44-53. Lu Z D. Empirical evaluation of the operational performance of national scientific data sharing service platforms. Forum on Science and Technology in China, 2024, (5): 44-53. (in Chinese)
7. 李骐安, 孟宪飞, 张书华, 等. 基于FAIR原则的中国科学数据资源现状分析及启示. 数字图书馆论坛, 2023, 19(1): 50-57. Li Q A, Meng X F, Zhang S H, et al. Status analysis and implications of scientific data resources in China based on FAIR principles. Digital Library Forum, 2023, 19(1): 50-57. (in Chinese)
8. 邢文明, 殷丹. 我国科学数据中心网络影响力评价研究. 高校图书馆工作, 2025, 45(1): 11-22. Xing W M, Yin D. Research on the evaluation of network influence of scientific data centers in China. Library Work in Colleges and Universities, 2025, 45(1): 11-22. (in Chinese)
9. 罗瑞云, 单嵩岩. 科学数据归档格式管理现状分析与启示. 北京档案, 2024, (12): 19-25. Luo R Y, Shan S Y. Analysis of the current status of scientific data archiving format management and its implications. Beijing Archives, 2024, (12): 19-25. (in Chinese)
10. 何依, 司莉, 刘莉. 我国开放科学数据平台协同治理现状调查研究. 图书馆学研究, 2024, (12): 52-62. He Y, Si L, Liu L. Investigation and research on the current status of collaborative governance of open scientific data platforms in China. Research on Library Science, 2024, (12): 52-62. (in Chinese)
11. 许丽媛, 钱力, 常志军. 科学数据汇交共享政策框架研究——以中国科学院文献情报中心为例. 图书情报工作, 2025, 69(3): 102-109. Xu L Y, Qian L, Chang Z J. Research on the policy framework of scientific data collection and sharing: Taking the National Science Library, Chinese Academy of Sciences as an example. Library and Information Service, 2025, 69(3): 102-109. (in Chinese)
12. 范昊, 郑小川, 热孜亚·艾海提. 我国科研数据开放共享政策供需匹配研究. 信息资源管理学报, 2023, 13(6): 156-165. Fan H, Zheng X C, AihaitiReziya. Research on the match between Chinese research data open sharing policy supply and user demand. Journal of Information Resources Management, 2023, 13(6): 156-165. (in Chinese)
13. 周文能, 刘云, 王刚波. 国内外科学数据管理与共享政策分析及对国家自然科学基金的启示. 中国科学基金, 2023, 37(1): 150-160. Zhou W N, Liu Y, Wang G B. Policy analysis of domestic and foreign scientific data management and sharing and its enlightenment to National Natural Science Foundation of China. Bulletin of National Natural Science Foundation of China, 2023, 37(1): 150-160. (in Chinese)
14. 张连分. 国际科学数据控制对我国数据安全的影响. 图书馆建设, 2025, (3): 80-91. Zhang L F. Impact of international scientific data control on China’s data security. Library Development, 2025, (3): 80-91. (in Chinese)
15. 魏鑫, 孔丽华, 汪洋. 我国科学数据出境管理对策研究. 农业大数据学报, 2024, 6(2): 156-160. Wei X, Kong L H, Wang Y. Research on countermeasures of scientific data exit management in China. Journal of Agricultural Big Data, 2024, 6(2): 156-160. (in Chinese)
16. 陈铭. 国内外科学数据出版实践概况与发展趋势分析. 中国数字出版, 2025, 3(6): 31-39. Chen M. Analysis of the current status and development trends in open scientific data publishing practices: Domestic and international perspectives. China Digital Publishing, 2025, 3(6): 31-39. (in Chinese)
17. 顾昕. 数据知识产权在科学数据领域的适用. 科技中国, 2024, (5): 1-4. Gu X. The applicability of data intellectual property in the field of scientific data. Scitech in China, 2024, (5): 1-4. (in Chinese)
18. 孙瑜晨, 郑诗彦. 以开放共享为导向的科学数据分类分级制度建构:价值旨归与实现路径. 科技进步与对策, 2025, 42(12): 140-150. Sun Y C, Zheng S Y. Construction of a scientific data classification and grading system oriented by Open Sharing: System value and realization strategy. Science & Technology Progress and Policy, 2025, 42(12): 140-150. (in Chinese)
19. 史雅莉, 李晓璇, 严诗琴. 科学数据汇交中科研人员的行为意愿. 图书馆论坛, 2025, 45(6): 141-150. Shi Y L, Li X X, Yan S Q. A study on the behavioral intention of researchers in scientific data submission. Library Tribune, 2025, 45(6): 141-150. (in Chinese)
Recommended Citation
CHEN, Kaihua; LIU, Hongxin; and GUO, Rui
(2026)
"Significance, challenges, and policy recommendations for strengthening database development to support AI for Science in China,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 41
:
Iss.
1
, Article 17.
DOI: https://doi.org/10.3724/j.issn.1000-3045.20250423004
Available at:
https://bulletinofcas.researchcommons.org/journal/vol41/iss1/17
Included in
Databases and Information Systems Commons, Models and Methods Commons, Political Theory Commons, Science and Technology Policy Commons