•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

western China; global warming; climate extremization; prediction; climate change mitigation and adaption

Document Type

Strategic Research on S & T Supporting Construction of Ecological Barrier in Western China

Abstract

In the context of accelerating global warming, the western China has experienced intensified climate extremes, with frequent occurrences of meteorological, hydrological, and ecological disasters. The unpredictability of these events has increased, posing significant challenges to disaster prevention and mitigation as well as sustainable development in these areas. In this context, this study, based on a scientific assessment of the facts and risks of climate change in the western China, has identified several fundamental, critical, and strategic scientific and technological tasks to support the development of the western China in the field of climate change. Corresponding suggestions and measures are also provided, aiming to the regional development by addressing climate change challenges.

First page

1000

Last Page

1008

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 严中伟, 丁一汇, 翟盘茂, 等. 近百年中国气候变暖趋势之再评估. 气象学报, 2020, 78(3): 370-378. Yan Z W, Ding Y H, Zhai P M, et al. Re-assessing climatic warming in China since the last century. Acta Meteorologica Sinica, 2020, 78(3): 370-378. (in Chinese)

2 秦大河, 翟盘茂. 中国气候与生态环境演变:2021(第一卷 科学基础). 北京: 科学出版社, 2021. Qin D H, Zhai P M. Climate and Ecological Environment Evolution in China: 2021 (Volume 1: Scientific Basis). Beijing: Science Press, 2021. (in Chinese)

3 王会军, 孙建奇, 陈活泼, 等. 全球变暖加速和气候极端化——2024年中国气候研究重大进展速评. 大气科学学报, 2025, 48(1): 1-7. Wang H J, Sun J Q, Chen H P, et al. Global warming acceleration and climate extremization: comments on major climate research advances in China 2024. Transactions of Atmospheric Sciences, 2025, 48(1): 1-7. (in Chinese)

4 丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望. 地球科学进展, 2023, 38(6): 551-562. Ding Y H,Liu Y J,Xu Y,et al. Regional responses to global climate change:Progress and prospects for trend,causes,and projection of climatic warming-wetting in Northwest China. Advances in Earth Science,2023, 38(6): 551-562. (in Chinese)

5 张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望. 科学通报, 2023, 68(14): 1814-1828. Zhang Q, Yang J H, Wang P L, et al. Progress and prospect on climate warming and humidification in Northwest China. Chinese Science Bulletin, 2023, 68(14): 1814-1828. (in Chinese)

6 Li L C, Yao N, Li Y, et al. Future projections of extreme temperature events in different sub-regions of China. Atmospheric Research, 2019, 217: 150-164.

7 Chen H P, Sun J Q, Lin W Q, et al. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Science Bulletin, 2020, 65(17): 1415-1418.

8 Chen H P, Sun J Q. Anthropogenic influence has increased climate extreme occurrence over China. Science Bulletin, 2021, 66(8): 749-752.

9 Guan J Y, Yao J Q, Li M Y, et al. Historical changes and projected trends of extreme climate events in Xinjiang, China. Climate Dynamics, 2022, 59(5): 1753-1774.

10 张岩, 张建军, 张艳得, 等. 三江源区径流长期变化趋势对降水响应的空间差异. 环境科学研究, 2017, 30(1): 40-50. Zhang Y, Zhang J J, Zhang Y D, et al. Spatial variation of long-term runoff trends and response to precipitation change in the three-river headwaters region. Research of Environmental Sciences, 2017, 30(1): 40-50. (in Chinese)

11 汤秋鸿, 兰措, 苏凤阁, 等. 青藏高原河川径流变化及其影响研究进展. 科学通报, 2019, 64(27): 2807-2821. Tang Q H, Lan C, Su F G, et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts. Chinese Science Bulletin, 2019, 64: 2807-2821.(in Chinese)

12 Su F, Zhang L, Ou T, et al. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global and Planetary Change, 2016, 136: 82-95.

13 黄建平, 张国龙, 于海鹏, 等. 黄河流域近40年气候变化的时空特征. 水利学报, 2020, 51(9): 1048-1058. Huang J P, Zhang G L, Yu H P, et al. Characteristics of climate change in the Yellow River basin during recent 40 years. Journal of Hydraulic Engineering, 2020, 51(9): 1048-1058. (in Chinese)

14 Hu J Y, Wu Y P, Sun P C, et al. Predicting long-term hydrological change caused by climate shifting in the 21st Century in the headwater area of the Yellow River Basin. Stochastic Environmental Research and Risk Assessment, 2022, 36(6): 1651-1668.

15 刘时银, 张勇, 刘巧, 等. 气候变化影响与风险:气候变化对冰川影响与风险研究. 北京: 科学出版社, 2017. Liu S Y, Zhang Y, Liu Q, et al. Climate Change Impacts and Risks: A Study on Glacial Impacts and Risks Under Climate Change. Beijing: Science Press, 2017. (in Chinese)

16 Wang C H, Zhao W, Cui Y. Changes in the seasonally frozen ground over the eastern Qinghai-Tibet Plateau in the past 60 years. Frontiers in Earth Science, 2020, 8: 270.

17 You Q L, Wu T, Shen L C, et al. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Science Reviews, 2020, 201: 103043.

18 王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响. 中国科学院院刊, 2019, 34(11): 1220-1232. Wang N L, Yao T D, Xu B Q, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232. (in Chinese)

19 Intergovernmental Panel on Climate Change. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge: IPCC, 2019.

20 Shi S Y, Yu J J, Wang F, et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Science of The Total Environment, 2021, 755: 142419.

21 范泽孟. 青藏高原植被生态系统垂直分布变化的情景模拟. 生态学报, 2021, 41(20): 8178-8191. Fan Z M. Scenario simulation of vertical distribution changes of vegetation ecosystem in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2021, 41(20): 8178-8191. (in Chinese)

22 Su F L, Wei Y N, Wang F W, et al. Sensitivity of plant species to warming and altered precipitation dominates the community productivity in a semiarid grassland on the Loess Plateau. Ecology and Evolution, 2019, 9(13): 7628-7638.

23 尹云鹤, 马丹阳, 邓浩宇, 等. 中国北方干湿过渡区生态系统生产力的气候变化风险评估. 地理学报, 2021, 76(7): 1605-1617. Yin Y H, Ma D Y, Deng H Y, et al. Climate change risk assessment of ecosystem productivity in the arid/humid transition zone of northern China. Acta Geographica Sinica, 2021, 76(7): 1605-1617. (in Chinese)

24 Chen H P, He W Y, Sun J Q, et al. Increases of extreme heat-humidity days endanger future populations living in China. Environmental Research Letters, 2022, 17(6): 064013.

25 Zhang Z J, Wang M M, Wu Z J, et al. Permafrost deformation monitoring along the Qinghai-Tibet Plateau engineering corridor using InSAR observations with multi-sensor SAR datasets from 1997-2018. Sensors, 2019, 19(23): 5306.

26 Li M R, Guo J P, He J Q, et al. Possible impact of climate change on apple yield in Northwest China. Theoretical and Applied Climatology, 2020, 139: 191-203.

27 Wu J, Shi Y, Xu Y. Evaluation and projection of surface wind speed over China based on CMIP6 GCMs. Journal of Geophysical Research: Atmospheres, 2020, 125(22): e2020JD033611.

28 蔡洋. 气候变化对旅游业的影响研究——以南京市为例. 南京: 南京信息工程大学, 2020. Cai Y. Study on the Impact of Climate Change on Tourism: A Case of Nanjing City. Nanjing: Nanjing University of Information Science and Technology, 2020. (in Chinese)

Share

COinS