•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

ultra-precision equipment; materials science and technology; challenges and opportunities

Document Type

Current Landscape and Future Perspectives of High-end Manufacturing

Abstract

The technological advancement of ultra-precision equipment is highly dependent on the development of advanced high-performance materials. The preparation and processing techniques of key materials directly impact the performance and service behavior of ultra-precision equipment. Nevertheless, the shortcomings in high-performance materials have become major weaknesses in China’s high-end equipment manufacturing. This study systematically summarizes the application of advanced materials in ultra-precision equipment and provides an in-depth analysis of the current status of material preparation and processing technologies, and prospects for future development directions in this field are offered as well. Based on a thorough analysis of the main issues currently faced by China’s ultra-precision equipment material industry, the study proposes solutions and development strategies from both technical and policy perspectives, aiming to facilitate the deep integration of various advanced materials and manufacturing technologies, thereby promoting the optimization and upgrading of ultra-precision equipment manufacturing technology and enhancing the competitiveness of related industries.

First page

861

Last Page

869

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 李国鹏, 韩淋, 潘教峰, 等. 《2023技术聚焦》折射新一轮科技革命与产业变革的形势及制高点. 中国科学院院刊, 2024, 39(8): 1447-1457. Li G P, Han L, Pan J F, et al.2023 Technology Focus: Reflecting the situation and technological high grounds of latest round of sci-tech revolution and industrial transformation. Bulletin of Chinese Academy of Sciences, 2024, 39(8): 1447-1457. (in Chinese)

2 谢曼, 干勇, 王慧. 面向2035的新材料强国战略研究. 中国工程科学, 2020, 22(5): 1-9. Xie M, Gan Y, Wang H. Research on new material power strategy by 2035. Strategic Study of CAE, 2020, 22(5): 1-9. (in Chinese)

3 郭靖雅, 胡小月, 王成勇, 等. PCD刀具激光加工技术及其装备研究进展. 工具技术, 2024, 58(4): 3-12. Guo J Y, Hu X Y, Wang C Y, et al. Research progress of PCD tool laser machining technology and its equipment. Tool Engineering, 2024, 58(4): 3-12. (in Chinese)

4 屠海令, 李腾飞, 马飞. 我国关键基础材料发展现状及展望. 中国工程科学, 2017, 19(3): 125-135. Tu H L, Li T F, Ma F. The development status and prospect of China’s critical basic materials. Strategic Study of CAE, 2017, 19(3): 125-135. (in Chinese)

5 干勇. 关键基础材料的发展及创新. 钢铁研究学报, 2021, 33(10): 997-1002. Gan Y. Development and innovation of key basic materials. Journal of Iron and Steel Research, 2021, 33(10): 997-1002. (in Chinese)

6 Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components. Metals, 2020, 10(6): 705.

7 Xu M, Shin D, Sberna P M, et al. High-strength amorphous silicon carbide for nanomechanics. Advanced Materials, 2024, 36(5): e2306513.

8 陈磊, 刘阳钦, 唐川, 等. 面向超精密加工的微观材料去除机理研究进展. 机械工程学报, 2023, 59(23): 229-264. Chen L, Liu Y Q, Tang C, et al. Research advance on material removal at microscale towards ultra-precision manufacturing. Journal of Mechanical Engineering, 2023, 59(23): 229-264. (in Chinese)

9 金展鹏, 蔡格梅, 苏柳梅, 等. 走中国道路创建新材料制造科学体系——论材料科学与新兴产业链的全方位发展. 中国科学院院刊, 2016, 31(11): 1244-1252. Jin Z P, Cai G M, Su L M, et al. Chinese strategies of materials development and their manufacturing and fabrication—Comprehensive development of material science and its emerging industry chain. Bulletin of Chinese Academy of Sciences, 2016, 31(11): 1244-1252. (in Chinese)

10 武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战. 中国工程科学, 2020, 22(2): 79-90. Wu G H, Kuang Z Y. Opportunities and challenges for metal matrix composites in the context of equipment upgrading. Strategic Study of CAE, 2020, 22(2): 79-90. (in Chinese)

11 Ju H B, Ding N, Xu J H, et al. The influence of crystal structure and the enhancement of mechanical and frictional properties of titanium nitride film by addition of ruthenium. Applied Surface Science, 2019, 489: 247-254.

12 杨锐, 马英杰, 程世婧. 海洋观测探测平台关键材料发展与展望. 中国科学院院刊, 2022, 37(7): 881-887. Yang R, Ma Y J, Cheng S J. Perspective on key materials for marine observation and exploration platform. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 881-887. (in Chinese)

13 Pollice R, Dos Passos G G, Aldeghi M, et al. Data-driven strategies for accelerated materials design. Accounts of Chemical Research, 2021, 54(4): 849-860.

14 王国彪, 赖一楠, 卢秉恒, 等. “纳米制造的基础研究” 重大研究计划结题综述. 中国科学基金, 2019, 33(3): 261-274. Wang G B, Lai Y N, Lu B H, et al. Review of the achievements of major research plan on “fundamental research on nanomanufacturing”. Bulletin of National Natural Science Foundation of China, 2019, 33(3): 261-274. (in Chinese)

15 孟徽, 孟磊, 张兵. 构建我国材料领域科技创新发展新格局的思考. 科学管理研究, 2021, 39(3): 45-48. Meng H, Meng L, Zhang B. The suggestions on developing a new stage of scientific and technological innovation in the field of material. Scientific Management Research, 2021, 39(3): 45-48. (in Chinese)

Share

COinS