•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

data governance; information technology; lifecycle; data circulation; data security

Document Type

Scenario-oriented Technology Foresight on Information Technology for Public Governance

Abstract

In recent years, the digital economy, driven by data as a critical element, has developed rapidly. Nevertheless, China’s progress in data factorization and valorization is still at a preliminary stage. The data governance system remains underdeveloped, with numerous challenges and technical issues arising in the full lifecycle governance of data, including supply, circulation, application, and security protection. Against this backdrop, this study analyzes the primary technical bottlenecks encountered during the modernization of China’s data governance framework. By employing bibliometric analysis, patent data analysis, Delphi surveys, and expert opinions, a critical technology list to support the modernization of data governance in China is identified. The study concludes that efforts should focus on specific scenario requirements for full lifecycle data governance, with increased investment in the R&D and innovative application of key data governance technologies. The effective use of information technology can provide robust support for full lifecycle data governance, thereby accelerating the modernization of the data governance system and its associated capabilities.

First page

1696

Last Page

1708

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1. 王建冬, 童楠楠. 数字经济背景下数据与其他生产要素的协同联动机制研究. 电子政务, 2020, (3): 22-31. Wang J D, Tong N N. Research on the collaborative and interactive mechanisms between data and other production factors in the context of the digital economy. E-Government, 2020, (3): 22-31. (in Chinese)

2. Hao J, Deng Z Y, Li J P. The evolution of data pricing: From economics to computational intelligence. Heliyon, 2023, 9(9): e20274.

3. 中国科学院学部重大咨询项目子课题“信息技术支撑数据治理现代化的战略研究”课题组, 吴登生, 冯钰瑶, 等. 数据治理现代化的关键支撑. 国家治理, 2023, (13): 34-38. Research Group of the Major Consulting Project Sub-Topic “Strategic Research on Information Technology Supporting Data Governance Modernization”, Chinese Academy of Sciences, Wu D S, Feng Y Y, et al. Key Supports for Data Governance Modernization. Governance, 2023, (13): 34-38. (in Chinese)

4. Janssen M, Brous P, Estevez E, et al. Data governance: Organizing data for trustworthy Artificial Intelligence. Government Information Quarterly, 2020, 37(3): 101493.

5. 陈凯华, 冯泽, 孙茜. 创新大数据、创新治理效能和数字化转型. 研究与发展管理, 2020, 32(6): 1-12. Chen K H, Feng Z, Sun Q. Big data of innovation, innovation governance efficacy and digital transformation. R&D Management, 2020, 32(6): 1-12. (in Chinese)

6. 中国信息通信研究院. 《中国数字经济发展研究报告》(2024年). 北京: 中国信息通信研究院, 2024. China Academy of Information and Communications Technology. China Digital Economy Development Research Report (2024). Beijing: CAICT, 2024. (in Chinese)

7. 杨俊, 李小明, 黄守军. 大数据、技术进步与经济增长——大数据作为生产要素的一个内生增长理论. 经济研究, 2022, 57(4): 103-119. Yang J, Li X M, Huang S J. Big data,technical progress and economic growth: an endogenous growth theory introducing data as production factors. Economic Research Journal, 2022, 57(4): 103-119. (in Chinese)

8. Luo R, Zhou N X. Dynamic evolution, spatial differences, and driving factors of China’s provincial digital economy. Sustainability, 2022, 14(15): 9376.

9. 王煜心, 李建平, 郝俊. 集成效用与数据产品最优定价. 中国科学: 信息科学, 2024, 54(11): 2533-2553. Wang Y X, Li J P, Hao J. Integrated utility and optimizing pricing of data products. Scientia Sinica (Informationis), 2024, 54(11): 2533-2553. (in Chinese)

10. 徐宗本, 赵彦云, 朱利平, 等. 数字技术赋能国家统计现代化建设. 中国科学院院刊, 2022, 37(12): 1738-1744. Xu Z B, Zhao Y Y, Zhu L P, et al. Digital technology enables modernization of national statistics.Bulletin of Chinese Academy of Sciences, 2022, 37(12): 1738-1744. (in Chinese)

11. 孙茜, 冯霞, 隆云滔, 等. 数字技术赋能我国医疗治理现代化建设研究. 中国科学院院刊, 2022, 37(12): 1705-1715. Sun Q, Feng X, Long Y T, et al. Deepening digital technologies to enable modernization of China’s governance of health. Bulletin of Chinese Academy of Sciences, 2022, 37(12): 1705-1715. (in Chinese)

12. 杨善林, 丁帅, 顾东晓, 等. 医疗健康大数据驱动的知识发现与知识服务方法. 管理世界, 2022, 38(1): 219-229. Yang S L, Ding S, Gu D X, et al. Healthcare big data driven knowledge discovery and knowledge service approach. Journal of Management World, 2022, 38(1): 219-229. (in Chinese)

13. 孙点剑一, 李立明. 浅谈公共卫生与疾病预防控制体系建设. 中国科学院院刊, 2020, 35(9): 1096-1104. Sun D J Y, Li L M. Summary and recommendations of development of public health and disease prevention and control. Bulletin of Chinese Academy of Sciences, 2020, 35(9): 1096-1104. (in Chinese)

14. 韩扬眉. 科学数据要像学术论文一样积极“共享”. 中国科学报, 2022-03-15(004). Han Y M. Scientific data should be actively “shared” like academic papers. China Science Daily, 2022-03-15(004). (in Chinese)

15. 李金, 徐姗, 卓子寒, 等. 数据跨境流转的风险测度与分析——基于数据出境统计信息的实证研究. 管理世界, 2023, 39(7): 180-201. Li J, Xu S, Zhuo Z H, et al. Risk measurement and analysis for cross-border data flow: An empirical study based on statistics of outbound data. Journal of Management World, 2023, 39(7): 180-201. (in Chinese)

16. Stockley M. 81% concerned about ChatGPT security and safety risks, Malwarebytes survey shows. (2023-06-27)[2025-06-11]. https://www.malwarebytes.com/blog/news/2023/06/chatgpt.

Share

COinS