Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
new productive force; green biomanufacturing; cell factory; digitalization; synthetic biology
Document Type
Biomanufacturing: Retrospect and Prospects
Abstract
Green manufacturing is a modern manufacturing mode in the consideration of both environmental impact and efficiency of resource utilization, it represents a significant component of the “new productive force”. Centered on cell factories, green biomanufacturing leverages renewable resources to efficiently produce products that conform to the concepts of low-carbon, green, and sustainable development. The design of high-performance cell factories is pivotal for achieving efficient green biomanufacturing. Nevertheless, traditional cell factory design processes are complex, time-consuming, and labor-intensive. With advancements in artificial intelligence, digital-assisted cell factory design has emerged as a solution to save time and reduce costs. By integrating technologies such as database construction and updating, digital metabolic flux control design, digital retrosynthetic pathway design for target molecules, digital genetic circuit design, and fermentation process digital twin modeling, the full lifecycle digital design of cell factories can be achieved. This approach enables the rapid construction of high-performance cell factories, empowering green biomanufacturing.
First page
67
Last Page
78
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 谭天伟, 苏海佳, 陈必强, 等. 绿色生物制造. 北京化工大学学报(自然科学版), 2018, 45(5): 107-118. Tan T W, Su H J, Chen B Q, et al. Green bio-manufacturing. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 107-118. (in Chinese)
2 陈岳飞, 肖珍芳, 方向. 数字孪生技术及其在石油化工行业的应用. 天然气化工(C1化学与化工), 2021, 46(2): 25-30. Chen Y F, Xiao Z F, Fang X. Digital twin technology and its application in petrochemical industry. Natural Gas Chemical Industry, 2021, 46(2): 25-30. (in Chinese)
3 Rathore M M, Shah S A, Shukla D, et al. The role of AI, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities. IEEE Access, 2021, 9: 32030-32052.
4 徐玄, 于连超, 任思源. 美国生物数据战略发展态势及启示. 科技管理研究, 2024, 44(5): 40-46. Xu X, Yu L C, Ren S Y. Development trends and implications of the United States’biological data strategy. Science and Technology Management Research, 2024, 44(5): 40-46. (in Chinese)
5 Prešern U, Goličnik M. Enzyme databases in the era of omics and artificial intelligence. International Journal of Molecular Sciences, 2023, 24(23): 16918.
6 Zhao S D, Su C, Lu Z Y, et al. Recent advances in biomedical literature mining. Briefings in Bioinformatics, 2021, 22(3): bbaa057.
7 Thapa S, Adhikari S. ChatGPT, bard, and large language models for biomedical research: Opportunities and pitfalls. Annals of Biomedical Engineering, 2023, 51(12): 2647-2651.
8 Shamsabadi M, D’Souza J, Auer S. Large language models for scientific information extraction: An empirical study for virology. arXiv, 2024, doi: abs/2401.10040.
9 Kwon M S, Lee J, Kim H U. A machine learning framework for extracting information from biological pathway images in the literature. Metabolic Engineering, 2024, 86: 1-11.
10 Yang L, Zhang K Y, Xu M, et al. Mechanism-guided computational design of ω-transaminase by reprograming of high-energy-barrier steps. Angewandte Chemie (International Ed), 2022, 61(52): e202212555.
11 Bienert S, Waterhouse A, de Beer T A P, et al. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Research, 2017, 45(D1): 313-319.
12 Guex N, Peitsch M C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15): 2714-2723.
13 Leaver-Fay A, Tyka M, Lewis S M, et al. ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules. Methods in Enzymology, 2011, 487: 545-574.
14 Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630: 493-500.
15 Bolon D N, Mayo S L. Enzyme-like proteins by computational design. PNAS, 2001, 98(25): 14274-14279.
16 Privett H K, Kiss G, Lee T M, et al. Iterative approach to computational enzyme design. PNAS, 2012, 109(10): 3790-3795.
17 Suarez M, Tortosa P, Garcia-Mira M M, et al. Using multi-objective computational design to extend protein promiscuity. Biophysical Chemistry, 2010, 147(1-2): 13-19.
18 Burton A J, Thomson A R, Dawson W M, et al. Installing hydrolytic activity into a completely de novo protein framework. Nature Chemistry, 2016, 8(9): 837-844.
19 Wang P Y, Zhang J, Zhang S Y, et al. Using high-throughput molecular dynamics simulation to enhance the computational design of kemp elimination enzymes. Journal of Chemical Information and Modeling, 2023, 63(4): 1323-1337
20 Röthlisberger D, Khersonsky O, Wollacott A M, et al. Kemp elimination catalysts by computational enzyme design. Nature, 2008, 453: 190-195.
21 Jiang L, Althoff E A, Clemente F R, et al. De novo computational design of retro-aldol enzymes. Science, 2008, 319: 1387-1391.
22 Qian J Y, Ye C. Chapter One Development and applications of genome-scale metabolic network models. Advances in Applied Microbiology, 2024, 126: 1-26.
23 Jason A P, Nathan D P, Jeremy S E, et al. The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. Journal of Theoretical Biology, 2002, 215(1): 67-82.
24 Adadi R, Volkmer B, Milo R, et al. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Computational Biology, 2012, 8(7): e1002575.
25 Lerman J A, Hyduke D R, Latif H, et al. In silico method for modelling metabolism and gene product expression at genome scale. Nature Communications, 2012, 3: 929.
26 Basan M, Hui S, Okano H, et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature, 2015, 528: 99-104.
27 Henry C S, Broadbelt L J, Hatzimanikatis V. Thermodynamics-based metabolic flux analysis. Biophysical Journal, 2007, 92(5): 1792-1805.
28 Soh K C, Hatzimanikatis V. Network thermodynamics in the post-genomic era. Current Opinion in Microbiology, 2010, 13(3): 350-357.
29 Yang X, Mao Z T, Zhao X, et al. Integrating thermodynamic and enzymatic constraints into genome-scale metabolic models. Metabolic Engineering, 2021, 67: 133-144.
30 Wyrick J J, Young R A. Deciphering gene expression regulatory networks. Current Opinion in Genetics & Development, 2002, 12(2): 130-136.
31 Herrgård M J, Covert M W, Palsson B Ø. Reconstruction of microbial transcriptional regulatory networks. Current Opinion in Biotechnology, 2004, 15(1): 70-77.
32 Lu J G, Bi X Y, Liu Y F, et al. In silico cell factory design driven by comprehensive genome-scale metabolic models: Development and challenges. Systems Microbiology and Biomanufacturing, 2023, 3(2): 207-222.
33 杨雪, 张培基, 毛志涛, 等. 多约束代谢网络模型的研究进展. 生物工程学报, 2022, 38(2): 531-545.Yang X, Zhang P J, Mao Z T, et al. Development of metabolic models with multiple constraints: A review. Chinese Journal of Biotechnology, 2022, 38(2): 531-545. (in Chinese)
34 Heirendt L, Arreckx S, Pfau T, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nature Protocols, 2019, 14(3): 639-702.
35 Henry C S, DeJongh M, Best A A, et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotechnology, 2010, 28(9): 977-982.
36 Agren R, Liu L M, Shoaie S, et al. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Computational Biology, 2013, 9(3): e1002980.
37 Capela J, Lagoa D, Rodrigues R, et al. Merlin, an improved framework for the reconstruction of high-quality genome-scale metabolic models. Nucleic Acids Research, 2022, 50(11): 6052-6066.
38 Chen Y, Gustafsson J, Tafur Rangel A, et al. Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0. Nature Protocols, 2024, 19(3): 629-667.
39 Savinell J M, Palsson B O. Network analysis of intermediary metabolism using linear optimization. Journal of Theoretical Biology, 1992, 154(4): 455-473.
40 Qian J Y, Wang Y Z, Liu X E, et al. Improving acetoin production through construction of a genome-scale metabolic model. Computers in Biology and Medicine, 2023, 158: 106833.
41 Kim M, Yi J S, Kim J, et al. Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2). Biotechnology Journal, 2014, 9(9): 1185-1194.
42 Burgard A P, Pharkya P, Maranas C D. Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering, 2003, 84(6): 647-657.
43 Gong Z J, Chen J Y, Jiao X Y, et al. Genome-scale metabolic network models for industrial microorganisms metabolic engineering: Current advances and future prospects. Biotechnology Advances, 2024, 72: 108319.
44 Monk J M, Lloyd C J, Brunk E, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nature Biotechnology, 2017, 35(10): 904-908.
45 Ye C, Luo Q L, Guo L, et al. Improving lysine production through construction of an Escherichia coli enzyme-constrained model. Biotechnology and Bioengineering, 2020, 117(11): 3533-3544.
46 Yang X, Mao Z T, Zhao X, et al. Integrating thermodynamic and enzymatic constraints into genome-scale metabolic models. Metabolic Engineering, 2021, 67: 133-144.
47 Zhang C Y, Sánchez B J, Li F R, et al. Yeast9: A consensus genome-scale metabolic model for S. cerevisiae curated by the community. Molecular Systems Biology, 2024, 20(10): 1134-1150.
48 Ishchuk O P, Domenzain I, Sánchez B J, et al. Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae. PNAS, 2022, 119(30): e2108245119.
49 Bi X Y, Cheng Y, Xu X H, et al. etiBsu1209: A comprehensive multiscale metabolic model for Bacillus subtilis. Biotechnology and Bioengineering, 2023, 120(6): 1623-1639.
50 Bi X Y, Cheng Y, Lv X Q, et al. A multi-omics, machine learning-aware, genome-wide metabolic model of Bacillus subtilis refines the gene expression and cell growth prediction. Advanced Science, 2024, 11(42): e2408705.
51 Feierabend M, Renz A, Zelle E, et al. High-quality genome-scale reconstruction of Corynebacterium glutamicum ATCC 13032. Frontiers in Microbiology, 2021, 12: 750206.
52 Niu J H, Mao Z T, Mao Y F, et al. Construction and analysis of an enzyme-constrained metabolic model of Corynebacterium glutamicum. Biomolecules, 2022, 12(10): 1499.
53 张震, 曾雪城, 秦磊, 等. 微生物细胞工厂的智能设计进展. 化工学报, 2021, 72(12): 6093-6108.Zhang Z, Zeng X C, Qin L, et al. Intelligent design of microbial cell factory. CIESC Journal, 2021, 72(12): 6093-6108. (in Chinese)
54 Rodrigo G, Carrera J, Prather K J, et al. DESHARKY: Automatic design of metabolic pathways for optimal cell growth. Bioinformatics, 2008, 24(21): 2554-2556.
55 McClymont K, Soyer O S. Metabolic tinker: An online tool for guiding the design of synthetic metabolic pathways. Nucleic Acids Research, 2013, 41(11): e113.
56 Tan Z G, Clomburg J M, Cheong S, et al. A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones. Nature Catalysis, 2020, 3: 593-603.
57 Clomburg J M, Qian S, Tan Z G, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. PNAS, 2019, 116(26): 12810-12815.
58 Tan Z G, Li J, Hou J, et al. Designing artificial pathways for improving chemical production. Biotechnology Advances, 2023, 64: 108119.
59 Delépine B, Duigou T, Carbonell P, et al. RetroPath2.0: A retrosynthesis workflow for metabolic engineers. Metabolic Engineering, 2018, 45: 158-170.
60 Ni Z F, Stine A E, Tyo K E J, et al. Curating a comprehensive set of enzymatic reaction rules for efficient novel biosynthetic pathway design. Metabolic Engineering, 2021, 65: 79-87.
61 Finnigan W, Hepworth L J, Flitsch S L, et al. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nature Catalysis, 2021, 4(2): 98-104.
62 Koch M, Duigou T, Faulon J L. Reinforcement learning for bioretrosynthesis. ACS Synthetic Biology, 2020, 9(1): 157-168.
63 Zheng S J, Zeng T, Li C T, et al. Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP. Nature Communications, 2022, 13(1): 3342.
64 Probst D, Manica M, Nana Teukam Y G, et al. Biocatalysed synthesis planning using data-driven learning. Nature Communications, 2022, 13(1): 964.
65 Wang X R, Li Y Q, Qiu J Z, et al. RetroPrime: A Diverse, plausible and Transformer-based method for Single-Step retrosynthesis predictions. Chemical Engineering Journal, 2021, 420: 129845.
66 Chen Z Q, Ayinde O R, Fuchs J R, et al. G2Retro as a two-step graph generative models for retrosynthesis prediction. Communications Chemistry, 2023, 6(1): 102.
67 Chan C T Y, Kennedy V, Kinshuk S. A domain swapping strategy to create modular transcriptional regulators for novel topology in genetic network. Biotechnology Advances, 2024, 72: 108345.
68 Xu X H, Lv X Q, Bi X Y, et al. Genetic circuits for metabolic flux optimization. Trends in Microbiology, 2024, 32(8): 791-806.
69 Myers C, Clancy K, Misirli G, et al. The synthetic biology open language. Methods in Molecular Biology, 2015, 1244: 323-336.
70 Keating S M, Waltemath D, König M, et al. SBML Level 3: An extensible format for the exchange and reuse of biological models. Molecular Systems Biology, 2020, 16(8): e9110.
71 McLaughlin J A, Myers C J, Zundel Z, et al. SynBioHub: A standards-enabled design repository for synthetic biology. ACS Synthetic Biology, 2018, 7(2): 682-688.
72 Kamens J. The Addgene repository: An international nonprofit plasmid and data resource. Nucleic Acids Research, 2015, 43(Database issue): D1152-D1157.
73 Vilanova C, Porcar M. iGEM2.0—Refoundations for engineering biology. Nature Biotechnology, 2014, 32(5): 420-424.
74 Terry L, Earl J, Thayer S, et al. SBOLCanvas: A visual editor for genetic designs. ACS Synthetic Biology, 2021, 10(7): 1792-1796.
75 Buecherl L, Roberts R, Fontanarrosa P, et al. Stochastic hazard analysis of genetic circuits in iBioSim and STAMINA. ACS Synthetic Biology, 2021, 10(10): 2532-2540.
76 Jones T S, Oliveira S M D, Myers C J, et al. Genetic circuit design automation with cello 2.0. Nature Protocols, 2022, 17(4): 1097-1113.
77 Sents Z, Stoughton T E, Buecherl L, et al. SynBioSuite: A tool for improving the workflow for genetic design and modeling. ACS Synthetic Biology, 2023, 12(3): 892-897.
78 Chen Y, Zhang S Y, Young E M, et al. Genetic circuit design automation for yeast. Nature Microbiology, 2020, 5(11): 1349-1360.
79 Taketani M, Zhang J B, Zhang S Y, et al. Genetic circuit design automation for the gut resident species Bacteroides thetaiotaomicron. Nature Biotechnology, 2020, 38(8): 962-969.
80 Shah P, Sheriff M Z, Bangi M S F, et al. Multi-rate observer design and optimal control to maximize productivity of an industry-scale fermentation process. AIChE Journal, 2023, 69(2): e17946.
81 Wang G, Haringa C, Noorman H, et al. Developing a computational framework to advance bioprocess scale-up. Trends in Biotechnology, 2020, 38(8): 846-856.
82 Li X Y, Yu C, Yao J M, et al. An online respiratory quotient-feedback strategy of feeding yeast extract for efficient arachidonic acid production by Mortierella alpina. Frontiers in Bioengineering and Biotechnology, 2018, 5: 83.
83 Zou X, Xia J Y, Chu J, et al. Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50 L to 132 m3 fermenter. Bioprocess and Biosystems Engineering, 2012, 35(5): 789-800.
84 Li X, Huang C, Xu C Q, et al. High cell density culture of baker’s yeast FX-2 based on pH-stat coupling with respiratory quotient. Biotechnology and Applied Biochemistry, 2019, 66(3): 389-397.
85 Udugama I A, Lopez P C, Gargalo C L, et al. Digital Twin in biomanufacturing: Challenges and opportunities towards its implementation. Systems Microbiology and Biomanufacturing, 2021, 1(3): 257-274.
86 Markarian J. Opportunities for digital twins. Biopharm International, 2021, 34(9): 30-33.
87 Haringa C, Tang W J, Wang G, et al. Computational fluid dynamics simulation of an industrial P. chrysogenum fermentation with a coupled 9-pool metabolic model: Towards rational scale-down and design optimization. Chemical Engineering Science, 2018, 175: 12-24.
88 Bandala M, Chard P, Cockbain N, et al. Digital twin challenges and opportunities for nuclear fuel manufacturing applications. Nuclear Engineering and Design, 2024, 420: 113013.
89 Sahlab N, Kamm S, Muller T, et al. Knowledge graphs as enhancers of intelligent digital twins// 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). New York: IEEE, 2021: 19-24.
90 Banerjee A, Dalal R, Mittal S, et al. Generating digital twin models using knowledge graphs for industrial production lines. Proceedings of the 2017 ACM on Web Science Conference, 2017, doi: 10.1145/3091478.3162383.
91 Jensen K M, MacDonald J A. Towards thoughtful planning of ERP studies: How participants, trials, and effect magnitude interact to influence statistical power across seven ERP components. Psychophysiology, 2023, 60(7): e14245.
92 Zwolińska B, Tubis A A, Chamier-Gliszczyński N, et al. Personalization of the MES system to the needs of highly variable production. Sensors, 2020, 20(22): 6484.
93 Kong W F, Huang L P, Quan X, et al. Synergistic induced charge transfer switch by oxygen vacancy and pyrrolic nitrogen in MnFe2O4/g-C3N4 heterojunctions for efficient transformation of bicarbonate to acetate in photo-assisted MES. Applied Catalysis B: Environment and Energy, 2022, 307: 121214.
94 刘思逸. 发酵车间的数字化生产管理系统研发. 杭州: 杭州电子科技大学, 2023. Liu S Y. Development of a Digital Production Management System for Fermentation Workshops. Hangzhou: Hangzhou Dianzi University, 2023. (in Chinese)
Recommended Citation
MENG, Fanze; CAO, Rui; HU, Bing; QIN, Lei; and LI, Chun
(2024)
"Digitalized design of cell factory enables green biomanufacturing,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 40
:
Iss.
1
, Article 7.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20241228001
Available at:
https://bulletinofcas.researchcommons.org/journal/vol40/iss1/7