Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
terpenoids; synthetic biology; chemical semi-synthesis; scale-up; artificial intelligence
Document Type
Biomanufacturing: Retrospect and Prospects
Abstract
Terpenoids, a class of chemical entities with diverse biological activities in nature, demonstrate significant potential for applications in fields such as drug discovery, flavor industry, and agriculture. However, traditional methods face challenges, including inefficiency and high costs, in the discovery and industrialization of terpenoids. The rapid development of synthetic biology, genomics, artificial intelligence, and automation provides new opportunities for efficient terpenoid discovery and industrialization. This study comprehensively analyzes how these technologies synergistically contribute to the discovery, optimization, and large-scale production of terpenoids, and summarizes the current high-yield situations of terpenoids. The aim is to propose innovative strategies to accelerate technological innovation and industrial upgrading in this field.
First page
47
Last Page
66
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 Bureau J A, Oliva M E, Dong Y M, et al. Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Natural Product Reports, 2023, 40(12): 1822-1848.
2 奚萌宇, 胡逸灵, 顾玉诚, 等. 基因组挖掘指导天然药物分子的发现. 合成生物学, 2024, 5(3): 447-473.Xi M Y, Hu Y L, Gu Y C, et al. Genome mining-directed discovery for natural medicinal products. Synthetic Biology Journal, 2024, 5(3): 447-473. (in Chinese)
3 Atanasov A G, Zotchev S B, Dirsch V M, et al. Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 2021, 20(3): 200-216.
4 胡哲辉, 徐娟, 卞光凯. 自动化高通量技术在天然产物生物合成中的应用. 合成生物学, 2023, 4(5): 932-946.Hu Z H, Xu J, Bian G K. Application of automated high-throughput technology in natural product biosynthesis. Synthetic Biology Journal, 2023, 4(5): 932-946. (in Chinese)
5 雷茹, 陶慧, 刘天罡. 基因组深度挖掘驱动微生物萜类化合物高效发现. 合成生物学, 2024, 5(3): 507-526.Lei R, Tao H, Liu T G. Deep genome mining boosts the discovery of microbial terpenoids. Synthetic Biology Journal, 2024, 5(3): 507-526. (in Chinese)
6 池豪铭, 刘天罡. 合成生物学助力天然产物的高效合成及创新发现. 生命科学, 2021, 33(12): 1510-1519.Chi H M, Liu T G. Synthetic biology promotes efficient production and innovative discovery of natural products. Chinese Bulletin of Life Sciences, 2021, 33(12): 1510-1519. (in Chinese)
7 程术, 邓子新, 卞光凯, 等. 萜类高效合成平台的搭建与萜类产物批量挖掘. 生命科学, 2019, 31(5): 449-457.Cheng S, Deng Z X, Bian G K, et al. Construction of high-efficient terpenoid platform and the application in terpenoid discovery. Chinese Bulletin of Life Sciences, 2019, 31(5): 449-457. (in Chinese)
8 Zhang J, Hansen L G, Gudich O, et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature, 2022, 609: 341-347.
9 Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440: 940-943.
10 Liu Q, Manzano D, Tanić N, et al. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metabolic Engineering, 2014, 23: 145-153.
11 Li C F, Li Y J, Wang J X, et al. An independent biosynthetic route to frame a xanthanolide-type sesquiterpene lactone in Asteraceae. The Plant Journal: For Cell and Molecular Biology, 2024, doi: 10.1111/tpj.17199.
12 Han L Y, Wu Y K, Xu Y M, et al. Engineered Saccharomyces cerevisiae for de novo δ-tocotrienol biosynthesis. Systems Microbiology and Biomanufacturing, 2024, 4(1): 150-164.
13 Hansen N L, Kjaerulff L, Heck Q K, et al. Tripterygium wilfordii cytochrome P450s catalyze the methyl shift and epoxidations in the biosynthesis of triptonide. Nature Communications, 2022, 13(1): 5011-5022.
14 Jiang B, Gao L, Wang H J, et al. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin Ⅲ. Science, 2024, 383: 622-629.
15 Xu R, Zou Y. Biosynthesis of (-)-vinigrol. Angewandte Chemie International Edition, 2024: e202416795.
16 Yuan Y J, Cheng S, Bian G K, et al. Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi. Nature Catalysis, 2022, 5: 277-287.
17 Zhang C Z, Wu J, Sun Q, et al. De novo production of bioactive sesterterpenoid ophiobolins in Saccharomyces cerevisiae cell factories. Microbial Cell Factories, 2024, 23(1): 129-142.
18 De La Peña R, Hodgson H, Liu J C, et al. Complex scaffold remodeling in plant triterpene biosynthesis. Science, 2023, 379: 361-368.
19 Liu Y Z, Zhao X X, Gan F, et al. Complete biosynthesis of QS-21 in engineered yeast. Nature, 2024, 629: 937-944.
20 Yuan W, Jiang C J, Wang Q, et al. Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast. Nature Communications, 2022, 13(1): 7715-7740.
21 Liao J J, Liu T Y, Xie L, et al. Heterologous mogrosides biosynthesis in cucumber and tomato by genetic manipulation. Communications Biology, 2023, 6(1): 191-202.
22 Cao Z Q, Li S Y, Lv J M, et al. Biosynthesis of clinically used antibiotic fusidic acid and identification of two short-chain dehydrogenase/reductases with converse stereoselectivity. Acta Pharmaceutica Sinica B, 2019, 9(2): 433-442.
23 Cao Z Q, Lv J M, Liu Q, et al. Biosynthetic study of cephalosporin P1 reveals a multifunctional P450 enzyme and a site-selective acetyltransferase. ACS Chemical Biology, 2020, 15(1): 44-51.
24 Xu B Y, Huang J P, Peng G Q, et al. Total biosynthesis of the medicinal triterpenoid saponin astragalosides. Nature Plants, 2024, 10(11): 1826-1837.
25 Zhu F Y, Zhong X F, Hu M , et al. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnology and Bioengineering, 2014, 111(7): 1396-1405.
26 Bian G K, Han Y C, Hou A W, et al. Releasing the potential power of terpene synthases by a robust precursor supply platform. Metabolic Engineering, 2017, 42: 1-8.
27 Lian J Z, HamediRad M, Zhao H M. Advancing metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas system. Biotechnology Journal, 2018, 13(9): e1700601.
28 Chen R, Jia Q D, Mu X, et al. Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis. PNAS, 2021, 118(29): e2023247118.
29 Tao H, Lauterbach L, Bian G K, et al. Discovery of non-squalene triterpenes. Nature, 2022, 606: 414-419.
30 Zhi Y, Dai C, Fang X T, et al. Gene-directed in vitro mining uncovers the insect-repellent constituent from mugwort (Artemisia argyi). Journal of the American Chemical Society, 2024, 146(45): 30883-30892.
31 Bian G K, Deng Z X, Liu T G. Strategies for terpenoid overproduction and new terpenoid discovery. Current Opinion in Biotechnology, 2017, 48: 234-241.
32 Jia X, Song J Y, Wu Y J, et al. Strategies for the enhancement of secondary metabolite production via biosynthesis gene cluster regulation in Aspergillus oryzae. Journal of Fungi, 2024, 10(5): 312.
33 肖丽萍, 邓子新, 刘天罡. 链霉菌底盘细胞的开发现状及其应用. 微生物学报, 2016, 56(3): 441-453.Xiao L P, Deng Z X, Liu T G. Progress in developing and applying Streptomyces chassis—A review. Acta Microbiologica Sinica, 2016, 56(3): 441-453. (in Chinese)
34 Komatsua M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. PNAS, 2010, 107(6): 2646-2651.
35 Komatsu M, Komatsu K, Koiwai H, et al. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synthetic Biology, 2013, 2(7): 384-396.
36 Yamada Y, Arima S, Nagamitsu T, et al. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host. The Journal of Antibiotics, 2015, 68(6): 385-394.
37 Lin J J, Yin X, Zeng Y R, et al. Progress and prospect: Biosynthesis of plant natural products based on plant chassis. Biotechnology Advances, 2023, 69: 108266.
38 邵洁, 李建华, 王凯博, 等. 植物底盘:天然产物合成生物学研究的新热点. 生物加工过程, 2017, 15(5): 24-31.Shao J, Li J H, Wang K B, et al. Plant chassis: New hotspots of natural product synthetic biology. Chinese Journal of Bioprocess Engineering, 2017, 15(5): 24-31. (in Chinese)
39 Kalkreuter E, Pan G H, Cepeda A J, et al. Targeting bacterial genomes for natural product discovery. Trends in Pharmacological Sciences, 2020, 41(1): 13-26.
40 涂然, 毛雨丰, 刘叶, 等. 工程菌种自动化高通量编辑与筛选研究进展. 生物工程学报, 2022, 38(11): 4162-4179.Tu R, Mao Y F, Liu Y, et al. Advances in automated high-throughput editing and screening of engineered strains. Chinese Journal of Biotechnology, 2022, 38(11): 4162-4179. (in Chinese)
41 崔金明, 张炳照, 马迎飞, 等. 合成生物学研究的工程化平台. 中国科学院院刊, 2018, 33(11): 1249-1257.Cui J M, Zhang B Z, Ma Y F, et al. Engineering platforms for synthetic biology research. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1249-1257. (in Chinese)
42 张亭, 冷梦甜, 金帆, 等. 合成生物研究重大科技基础设施概述. 合成生物学, 2022, 3(1): 184-194.Zhang T, Leng M T, Jin F, et al. Overview on platform for synthetic biology research at Shenzhen. Synthetic Biology Journal, 2022, 3(1): 184-194. (in Chinese)
43 Mullowney M W, Duncan K R, Elsayed S S, et al. Artificial intelligence for natural product drug discovery. Nature Reviews Drug Discovery, 2023, 22(11): 895-916.
44 Saldívar-González F I, Aldas-Bulos V D, Medina-Franco J L, et al. Natural product drug discovery in the artificial intelligence era. Chemical Science, 2021, 13(6): 1526-1546.
45 Moore S J, MacDonald J T, Wienecke S, et al. Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria. PNAS, 2018, 115(19): E4340-E4349.
46 Liu J Y, Nothias L F, Dorrestein P C, et al. Genomic and metabolomic analysis of the potato common scab pathogen Streptomyces scabiei. ACS Omega, 2021, 6(17): 11474-11487.
47 Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596: 583-589.
48 Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630: 493-500.
49 杨朔, 王洁, 张梦婷, 等. 基于人工智能的药物-靶标相互作用预测. 中国现代应用药学, 2022, 39(21): 2797-2803.Yang S, Wang J, Zhang M T, et al. Drug-target interaction prediction with artificial intelligence. Chinese Journal of Modern Applied Pharmacy, 2022, 39(21): 2797-2803. (in Chinese)
50 Rehman A U, Li M Y, Wu B J, et al. Role of artificial intelligence in revolutionizing drug discovery. Fundamental Research, 2024, doi: 10.1016/j.fmre.2024.04.021.
51 刘润哲, 宋俊科, 刘艾林, 等. 人工智能在基于配体和受体结构的药物筛选中的应用进展. 药学学报, 2021, 56(8): 2136-2145.Liu R Z, Song J K, Liu A L, et al. Progress on the application of artificial intelligence technology in ligand-based and receptor structure-based drug screening. Acta Pharmaceutica Sinica, 2021, 56(8): 2136-2145. (in Chinese)
52 黄芳, 杨红飞, 朱迅. 人工智能在新药发现中的应用进展. 药学进展, 2021, 45(7): 502-511.Huang F, Yang H F, Zhu X. Progress in the application of artificial intelligence in new drug discovery. Progress in Pharmaceutical Sciences, 2021, 45(7): 502-511. (in Chinese)
53 Li T, Liu X M, Xiang H Y, et al. Two-phase fermentation systems for microbial production of plant-derived terpenes. Molecules, 2024, 29(5): 1127.
54 Rinaldi M A, Ferraz C A, Scrutton N S. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Natural Product Reports, 2022, 39(1): 90-118.
55 Gao J Q, Li Y X, Yu W, et al. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nature Metabolism, 2022, 4(7): 932-943.
56 Huang Y L, Ye Z L, Wan X K, et al. Systematic mining and evaluation of the sesquiterpene skeletons as high energy aviation fuel molecules. Advanced Science, 2023, 10(23): e2300889.
57 Meadows A L, Hawkins K M, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 2016, 537: 694-697.
58 Ma Y S, Zu Y X, Huang S W, et al. Engineering a universal and efficient platform for terpenoid synthesis in yeast. PNAS, 2023, 120(1): e2207680120.
59 Ma B, Liu M, Li Z H, et al. Significantly enhanced production of patchoulol in metabolically engineered Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2019, 67(31): 8590-8598.
60 Hong J, Park S H, Kim S, et al. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Applied Microbiology and Biotechnology, 2019, 103(1): 211-223.
61 Chen R B, Gao J Q, Yu W, et al. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nature Chemical Biology, 2022, 18(5): 520-529.
62 Amna B, Su L Q, Dai Z J, et al. Enzyme engineering in microbial biosynthesis of terpenoids: Progress and perspectives. Sheng Wu Gong Cheng Xue Bao, 2024, 40(8): 2473-2488.
63 Kang W, Ma T, Liu M, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nature Communications, 2019, 10(1): 4248-4258.
64 Sun X X, Yuan Y J, Chen Q T, et al. Metabolic pathway assembly using docking domains from type I Cis-AT polyketide synthases. Nature Communications, 2022, 13(1): 5541-5552.
65 Zhu K, Kong J, Zhao B X, et al. Metabolic engineering of microbes for monoterpenoid production. Biotechnology Advances, 2021, 53: 107837.
66 Zhu Z T, Du M M, Gao B, et al. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction. Metabolic Engineering, 2021, 68: 232-245.
67 Ma Y S, Shang Y, Stephanopoulos G. Engineering peroxisomal biosynthetic pathways for maximization of triterpene production in Yarrowia lipolytica. PNAS, 2024, 121(5): e2314798121.
68 Ma T, Shi B, Ye Z L, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 2019, 52: 134-142.
69 Shi Y T, Dong T Y, Zeng B X, et al. Production of plant sesquiterpene lactone parthenolide in the yeast cell factory. ACS Synthetic Biology, 2022, 11(7): 2473-2483.
70 Wang X, Xiao L J, Zhang X Y, et al. Combined bioderivatization and engineering approach to improve the efficiency of geraniol production. Green Chemistry, 2022, 24(2): 864-876.
71 Baker J J, Shi J, Wang S Y, et al. ML-enhanced peroxisome capacity enables compartmentalization of multienzyme pathway. Nature Chemical Biology, 2024, doi: 10.1038/s41589-024-01759-2.
72 Zhao C, Wang X H, Lu X Y, et al. Spatiotemporal regulation and transport engineering for sustainable production of geraniol in Candida glycerinogenes. Journal of Agricultural and Food Chemistry, 2024, 72(9): 4825-4833.
73 Agrawal A, Yang Z L, Blenner M. Engineering Yarrowia lipolytica for the biosynthesis of geraniol. Metabolic Engineering Communications, 2023, 17: e00228.
74 Jiang G Z, Yao M D, Wang Y, et al. A “push-pull-restrain” strategy to improve citronellol production in Saccharomyces cerevisiae. Metabolic Engineering, 2021, 66: 51-59.
75 Zhou P P, Zhou X Q, Yuan D D, et al. Combining protein and organelle engineering for linalool overproduction in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2023, 71(26): 10133-10143.
76 Hoshino Y, Moriya M, Matsudaira A, et al. Stereospecific linalool production utilizing two-phase cultivation system in Pantoea ananatis. Journal of Biotechnology, 2020, 324: 21-27.
77 Wu J, Wang X, Xiao L J, et al. Synthetic protein scaffolds for improving R-(-)-linalool production in Escherichia coli. Journal of Agricultural and Food Chemistry, 2021, 69(20): 5663-5670.
78 Rolf J, Julsing M K, Rosenthal K, et al. A gram-scale limonene production process with engineered Escherichia coli. Molecules, 2020, 25(8): 1881.
79 Kong X, Wu Y K, Yu W W, et al. Efficient synthesis of limonene in Saccharomyces cerevisiae using combinatorial metabolic engineering strategies. Journal of Agricultural and Food Chemistry, 2023, 71(20): 7752-7764.
80 Gao Q D, Dong Y Q, Huang Y, et al. Dual-regulation in peroxisome and cytoplasm toward efficient limonene biosynthesis with Rhodotorula toruloides. ACS Synthetic Biology, 2024, 13(8): 2545-2554.
81 Zhang H B, Liu Q, Cao Y J, et al. Microbial production of sabinene—A new terpene-based precursor of advanced biofuel. Microbial Cell Factories, 2014, 13: 20-29.
82 Ye C F, Li M X, Gao J C, et al. Metabolic engineering of Pichia pastoris for overproduction of Cis-trans nepetalactol. Metabolic Engineering, 2024, 84: 83-94.
83 Kirby J, Geiselman G M, Yaegashi J, et al. Further engineering of R. toruloides for the production of terpenes from lignocellulosic biomass. Biotechnology for Biofuels, 2021, 14(1): 101-116.
84 Liu Y H, Jiang X, Cui Z Y, et al. Engineering the oleaginous yeast Yarrowia lipolytica for production of α-farnesene. Biotechnology for Biofuels, 2019, 12: 296-303.
85 Liu Y H, Zhang J, Li Q B, et al. Engineering Yarrowia lipolytica for the sustainable production of β-farnesene from waste oil feedstock. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 101-115.
86 Tan N, Ong L, Shukal S, et al. High-yield biosynthesis of trans-nerolidol from sugar and glycerol. Journal of Agricultural and Food Chemistry, 2023, 71(22): 8479-8487.
87 Liu F, Liu S C, Qi Y K, et al. Enhancing Trans-nerolidol productivity in Yarrowia lipolytica by improving precursor supply and optimizing nerolidol synthase activity. Journal of Agricultural and Food Chemistry, 2022, 70(48): 15157-15165.
88 Zhao B X, Zhang Y H, Wang Y P, et al. Biosynthesis of α-bisabolene from low-cost renewable feedstocks by peroxisome engineering and systems metabolic engineering of the yeast Yarrowia lipolytica. Green Chemistry, 2023, 25(20): 8145-8159.
89 Zhang Y, Song X H, Lai Y M, et al. High-yielding terpene—Based biofuel production in Rhodobacter capsulatus. ACS Synthetic Biology, 2021, 10(6): 1545-1552.
90 Lu Y, Liu D, Wang L, et al. Constructing high-yielding Serratia marcescens for (-)-α-bisabolol production based on the exogenous haloarchaeal MVA pathway and endogenous molecular chaperones. Journal of Agricultural and Food Chemistry, 2025, 73(1): 747-755.
91 Lim H S, Kim S K, Woo S G, et al. (–)-α-Bisabolol production in engineered Escherichia coli expressing a novel (–)-α-Bisabolol synthase from the globe artichoke Cynara cardunculus var. Scolymus. Journal of Agricultural and Food Chemistry, 2021, 69(30): 8492-8503.
92 Jiang Y K, Xia L, Gao S, et al. Engineering Saccharomyces cerevisiae for enhanced (–)-α-bisabolol production. Synthetic and Systems Biotechnology, 2023, 8(2): 187-195.
93 Zuo Y M, Xiao F, Gao J C, et al. Establishing Komagataella phaffii as a cell factory for efficient production of sesquiterpenoid α-santalene. Journal of Agricultural and Food Chemistry, 2022, 70(26): 8024-8031.
94 Ye Z L, Huang Y L, Shi B, et al. Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone. Metabolic Engineering, 2022, 72: 107-115.
95 Deng X M, Shi B, Ye Z L, et al. Systematic identification of Ocimum sanctum sesquiterpenoid synthases and (–)-eremophilene overproduction in engineered yeast. Metabolic Engineering, 2022, 69: 122-133.
96 Liu Q, Zhang G, Su L Q, et al. Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A. Green Chemistry, 2023, 25(20): 7988-7997.
97 Liu J J, Chen C, Wan X K, et al. Identification of the sesquiterpene synthase AcTPS1 and high production of (-)-germacrene D in metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2022, 21(1): 89-102.
98 Zhou L, Wang Q, Shen J W, et al. Metabolic engineering of glycolysis in Escherichia coli for efficient production of patchoulol and τ-cadinol. Bioresource Technology, 2024, 391: 130004.
99 Westfall P J, Pitera D J, Lenihan J R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. PNAS, 2012, 109(3): E111-E118.
100 Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496: 528-532.
101 Guo Q, Li Y W, Yan F, et al. Dual cytoplasmic-peroxisomal engineering for high-yield production of sesquiterpene α-humulene in Yarrowia lipolytica. Biotechnology and Bioengineering, 2022, 119(10): 2819-2830.
102 Zhang C B, Chen C, Bian X K, et al. Construction of an orthogonal transport system for Saccharomyces cerevisiae peroxisome to efficiently produce sesquiterpenes. Metabolic Engineering, 2024, 85: 84-93.
103 Li Z P, Gan Y H, Gou C Y, et al. Efficient biosynthesis of β-caryophyllene in Saccharomyces cerevisiae by β-caryophyllene synthase from Artemisia argyi. Synthetic and Systems Biotechnology, 2025, 10(1): 158-164.
104 Cheng T, Zhang K, Guo J, et al. Highly efficient biosynthesis of β-caryophyllene with a new sesquiterpene synthase from tobacco. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 39-52.
105 Shukal S, Chen X X, Zhang C Q. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli. Metabolic Engineering, 2019, 55: 170-178.
106 Wang J H, Li Y R, Jiang W, et al. Engineering Saccharomyces cerevisiae YPH499 for overproduction of geranylgeraniol. Journal of Agricultural and Food Chemistry, 2023, 71(25): 9804-9814.
107 Wang K F, Yin M X, Sun M L, et al. Engineering Yarrowia lipolytica for efficient synthesis of geranylgeraniol. Journal of Agricultural and Food Chemistry, 2024, 72(37): 20568-20581.
108 Zhang L H, Fan C, Yang H Q, et al. Biosynthetic pathway redesign in non-conventional yeast for enhanced production of cembratriene-ol. Bioresource Technology, 2024, 399: 130596.
109 Ajikumar P K, Xiao W H, Tyo K E J, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330: 70-74.
110 Cao X, Yu W, Chen Y, et al. Engineering yeast for high-level production of diterpenoid sclareol. Metabolic Engineering, 2023, 75: 19-28.
111 Hu T Y, Zhou J W, Tong Y R, et al. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metabolic Engineering, 2020, 60: 87-96.
112 Zhang C B, Ju H Y, Lu C Z, et al. High-titer production of 13R-manoyl oxide in metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2019, 18(1): 73-81.
113 Geiselman G M, Zhuang X, Kirby J, et al. Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides. Microbial Cell Factories, 2020, 19(1): 24-35.
114 Sun Y W, Chen Z, Wang G Y, et al. De novo production of versatile oxidized kaurene diterpenes in Escherichia coli. Metabolic Engineering, 2022, 73: 201-213.
115 Xu Y M, Wang X L, Zhang C Y, et al. De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts. Nature Communications, 2022, 13(1): 3040-3051.
116 Xiao M L, Wang Y M, Wang Y, et al. Repurposing the cellulase workhorse Trichoderma reesei as a ROBUST chassis for efficient terpene production. Green Chemistry, 2023, 25(18): 7362-7371.
117 Ning Y, Liu M S, Ru Z Y, et al. Efficient synthesis of squalene by cytoplasmic-peroxisomal engineering and regulating lipid metabolism in Yarrowia lipolytica. Bioresource Technology, 2024, 395: 130379.
118 Park J, Kang D H, Woo H M. Microbial bioprocess for extracellular squalene production and formulation of nanoemulsions. ACS Sustainable Chemistry & Engineering, 2021, 9(42): 14263-14276.
119 Jia N, Li J Z, Zang G W, et al. Engineering Saccharomyces cerevisiae for high-efficient production of ursolic acid via cofactor engineering and acetyl-CoA optimization. Biochemical Engineering Journal, 2024, 203: 109189.
120 Du M M, Zhang G G, Zhu Z T, et al. Boosting the epoxidation of squalene to produce triterpenoids in Saccharomyces cerevisiae. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 76-90.
121 Sun W T, Wan S T, Liu C Y, et al. Establishing cell suitability for high-level production of licorice triterpenoids in yeast. Acta Pharmaceutica Sinica B, 2024, 14(9): 4134-4148.
122 Cheng X, Pang Y R, Ban Y L, et al. Application of multiple strategies to enhance oleanolic acid biosynthesis by engineered Saccharomyces cerevisiae. Bioresource Technology, 2024, 401: 130716.
123 Huang J J, Zha W L, An T Y, et al. Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid. Applied Microbiology and Biotechnology, 2019, 103(17): 7029-7039.
124 Dong T Y, Zhou X, Hou Z J, et al. Multiple strategies enhance 7-dehydrocholesterol production from kitchen waste by engineered Yarrowia lipolytica. Journal of Agricultural and Food Chemistry, 2025, 73(1): 693-705.
125 Yin X R, Wei W Q, Chen Q H, et al. Reengineering the substrate tunnel to enhance the catalytic efficiency of squalene epoxidase. Journal of Agricultural and Food Chemistry, 2024, 72(44): 24599-24608.
126 Yin X R, Zhang Y L, Wei W Q, et al. Overproduction of cucurbitadienol through modular metabolic engineering and fermentation optimization in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2025, 73(1): 718-726.
127 Gan Y H, Li Z P, Fan B L, et al. De novo biosynthesis of a polyene-type ginsenoside precursor dammaradienol in Saccharomyces cerevisiae. ACS Synthetic Biology, 2024, 13(12): 4015-4026.
128 王冬, 刘怡, 许骄阳, 等. 创建酿酒酵母细胞工厂高效生产人参皂苷前体达玛烯二醇Ⅱ. 药学学报, 2018, 53(8): 1233-1241.Wang D, Liu Y, Xu J Y, et al. Construction of efficient yeast cell factories for production of ginsenosides precursor dammarenediol-Ⅱ. Acta Pharmaceutica Sinica, 2018, 53(8): 1233-1241. (in Chinese)
129 Pang Y R, Cheng X, Ban Y L, et al. Efficient production of 22(R)-hydroxycholesterol via combination optimization of Saccharomyces cerevisiae. Biotechnology Journal, 2024, 19(7): e2400286.
130 Zhu Y, Li J X, Peng L Y, et al. High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2022, 21(1): 230-242.
131 Li X D, Wang Y M, Fan Z J, et al. High-level sustainable production of the characteristic protopanaxatriol-type saponins from Panax species in engineered Saccharomyces cerevisiae. Metabolic Engineering, 2021, 66: 87-97.
132 Wang P P, Wei W, Ye W, et al. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discovery, 2019, 5: 5-18.
133 Li C J, Yan X, Xu Z Z, et al. Pathway elucidation of bioactive rhamnosylated ginsenosides in Panax ginseng and their de novo high-level production by engineered Saccharomyces cerevisiae. Communications Biology, 2022, 5(1): 775-783.
134 Wang P P, Wang J L, Zhao G P, et al. Systematic optimization of the yeast cell factory for sustainable and high efficiency production of bioactive ginsenoside compound K. Synthetic and Systems Biotechnology, 2021, 6(2): 69-76.
135 Hu Z F, Gu A D, Liang L, et al. Construction and optimization of microbial cell factories for sustainable production of bioactive dammarenediol-II glucosides. Green Chemistry, 2019, 21(12): 3286-3299.
136 Park K, Kim G, Cha S, et al. Efficient production of the colorless carotenoid phytoene in Yarrowia lipolytica through metabolic engineering. Journal of Agricultural and Food Chemistry, 2024, 72(48): 26786-26795.
137 Ma Y S, Liu N, Greisen P, et al. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nature Communications, 2022, 13(1): 572-582.
138 Zhou K, Yu C, Liang N, et al. Adaptive evolution and metabolic engineering boost lycopene production in Saccharomyces cerevisiae via enhanced precursors supply and utilization. Journal of Agricultural and Food Chemistry, 2023, 71(8): 3821-3831.
139 Sun T, Miao L T, Li Q Y, et al. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnology Letters, 2014, 36(7): 1515-1522.
140 Li K, Li C, Liu C G, et al. Engineering carbon source division of labor for efficient α-carotene production in Corynebacterium glutamicum. Metabolic Engineering, 2024, 84: 117-127.
141 Wu Y Q, Yan P P, Li Y, et al. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply. Frontiers in Bioengineering and Biotechnology, 2020, 8: 585-597.
142 Chen M K, Li M, Ye L D, et al. Construction of canthaxanthin-producing yeast by combining spatiotemporal regulation and pleiotropic drug resistance engineering. ACS Synthetic Biology, 2022, 11(1): 325-333.
143 Zhu H Z, Jiang S, Wu J J, et al. Production of high levels of 3 S, 3' S-astaxanthin in Yarrowia lipolytica via iterative metabolic engineering. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2673-2683.
144 Ren X F, Liu M S, Yue M Y, et al. Metabolic pathway coupled with fermentation process optimization for high-level production of retinol in Yarrowia lipolytica. Journal of Agricultural and Food Chemistry, 2024, 72(15): 8664-8673.
145 Shi Y, Lu S H, Zhou X, et al. Systematic metabolic engineering enables highly efficient production of vitamin A in Saccharomyces cerevisiae. Synthetic and Systems Biotechnology, 2025, 10(1): 58-67.
146 Lin J Y, Bu X, Lan Y B, et al. Combined metabolic engineering and lipid droplets degradation to increase vitamin A production in Saccharomyces cerevisiae. Microbial Cell Factories, 2024, 23(1): 317-328.
147 Wu W Z, Maravelias C T. Synthesis and techno-economic assessment of microbial-based processes for terpenes production. Biotechnology for Biofuels, 2018, 11: 294-307.
148 Peplow M. Synthetic biology’s first malaria drug meets market resistance. Nature, 2016, 530: 389-390.
149 Siemon T, Wang Z Q, Bian G K, et al. Semisynthesis of plant-derived englerin A enabled by microbe engineering of guaia-6,10(14)-diene as building block. Journal of the American Chemical Society, 2020, 142(6): 2760-2765.
150 Chi H M, Wen S, Wen T, et al. Geranylgeraniol: Bio-based platform for teprenone, menaquinone-4, and α-tocotrienol synthesis. Bioresource Technology, 2024, 411: 131349.
151 Ye Z L, Shi B, Huang Y L, et al. Revolution of vitamin E production by starting from microbial fermented farnesene to isophytol. The Innovation, 2022, 3(3): 100228.
152 马田, 邓子新, 刘天罡. 维生素E的“前世”和“今生”. 合成生物学, 2020, 1(2): 174-186.Ma T, Deng Z X, Liu T G. The past and present of vitamin E. Synthetic Biology Journal, 2020, 1(2): 174-186. (in Chinese)
153 夏建业, 刘晶, 庄英萍. 人工智能时代发酵优化与放大技术的机遇与挑战. 生物工程学报, 2022, 38(11): 4180-4199.Xia J Y, Liu J, Zhuang Y P. Opportunities and challenges for fermentation optimization and scale-up technology in the artificial intelligence era. Chinese Journal of Biotechnology, 2022, 38(11): 4180-4199. (in Chinese)
154 Heeres A S, Picone C S F, van der Wielen L A M, et al. Microbial advanced biofuels production: Overcoming emulsification challenges for large-scale operation. Trends in Biotechnology, 2014, 32(4): 221-229.
Recommended Citation
CHI, Haoming; ER, Liying; and LIU, Tiangang
(2024)
"Efficient discovery and industrialized manufacture of terpenoids,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 40
:
Iss.
1
, Article 6.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20241130005
Available at:
https://bulletinofcas.researchcommons.org/journal/vol40/iss1/6
Included in
Biochemical and Biomolecular Engineering Commons, Chemicals and Drugs Commons, Science and Technology Policy Commons