Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
microbial chassis; biomanufacturing; synthetic biology; new quality productive forces; extremophiles
Document Type
Biomanufacturing: Retrospect and Prospects
Abstract
Biomanufacturing is an important component of new quality productive forces, representing the commanding height of the new round of technological revolution and serving as a new engine for industrial transformation following information technology. It demonstrates vast application prospects in fields such as renewable energy, advanced materials, biomedicine, green food, and environmental protection. Biomanufacturing utilizes chassis microorganisms similar as “microchip” to produce various bioproducts via processes including chassis design and construction, large-scale cell cultivation, and product purifications. Most chassis microorganisms in biomanufacturing were not domestically identified. This study summarizes the types of common chassis microorganisms both domestically and internationally, as well as the current status of novel chassis microorganism development. It analyzes the primary issues and challenges faced by China in the development of chassis microorganisms. Furthermore, it focuses on the development of novel extremophilic microorganisms as novel chassis. We propose several points to promote the development of chassis microorganisms with independent IP in China, encompassing top-down designs for the 15th Five-Year Plan layout, platform construction, policy and regulatory frameworks, talent cultivation, regulatory mechanisms, legal protection, and evaluation systems.
First page
2
Last Page
13
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 杨永富, 耿碧男, 宋皓月, 等. 合成生物学时代基于非模式细菌的工业底盘细胞研究现状与展望. 生物工程学报, 2021, 37(3): 874-910. Yang Y F, Geng B N, Song H Y, et al. Progress and perspective on development of non-model industrial bacteria as chassis cells for biochemical production in the synthetic biology era. Chinese Journal of Biotechnology, 2021, 37(3): 874-910. (in Chinese)
2 Dunne K A, Chaudhuri R R, Rossiter A E, et al. Sequencing a piece of history: Complete genome sequence of the original Escherichia coli strain. Microbial Genomics, 2017, doi: 10.1099/mgen.0.000106.
3 于勇, 朱欣娜, 毕昌昊, 等. 大肠杆菌细胞工厂的创建技术. 生物工程学报, 2021, 37(5): 1564-1577. Yu Y, Zhu X N, Bi C H, et al. Construction of Escherichia coli cell factories. Chinese Journal of Biotechnology, 2021, 37(5): 1564-1577. (in Chinese)
4 Kovács Á T. Bacillus subtilis. Trends in Microbiology, 2019, 27(8): 724-725.
5 康倩, 向梦洁, 张大伟. 枯草芽孢杆菌在系统与合成生物技术中研究进展及工业应用. 生物工程学报, 2021, 37(3): 923-938. Kang Q, Xiang M J, Zhang D W, et al. Research progress and industrial application of Bacillus subtilis in systematic and synthetic biotechnology. Chinese Journal of Biotechnology, 2021, 37(3): 923-938. (in Chinese)
6 Kim G Y, Kim J, Park G, et al. Synthetic biology tools for engineering Corynebacterium glutamicum. Computational and Structural Biotechnology Journal, 2023, 21: 1955-1965.
7 Tsuge Y, Matsuzawa H. Recent progress in production of amino acid‐derived chemicals using Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology, 2021, doi: 10.1007/s11274-021-03007-4.
8 Nakazawa T. Travels of a Pseudomonas, from Japan around the world. Environmental Microbiology, 2002, 4(12): 782-786.
9 Weimer A, Kohlstedt M, Volke D C, et al. Industrial biotechnology of Pseudomonas putida: Advances and prospects. Applied Microbiology and Biotechnology, 2020, 104(18): 7745-7766.
10 Qi X Y, Gao X Y, Wang X, et al. Harnessing Pseudomonas putida in bioelectrochemical systems. Trends in Biotechnology, 2024, 42(7): 877-894.
11 Bull M, Plummer S, Marchesi J, et al. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiology Letters, 2013, 349(2): 77-87.
12 El-Saadony M T, Alagawany M, Patra A K, et al. The functionality of probiotics in aquaculture: An overview. Fish & Shellfish Immunology, 2021, 117: 36-52.
13 Waksman S A, Henrici A T. The nomenclature and classification of the actinomycetes. Journal of Bacteriology, 1943, 46(4): 337-341.
14 肖丽萍, 邓子新, 刘天罡. 链霉菌底盘细胞的开发现状及其应用. 微生物学报, 2016, 56(3): 441-453. Xiao L P, Deng Z X, Liu T G. Progress in developing and applying Streptomyces chassis—A review. Acta Microbiologica Sinica, 2016, 56(3): 441-453. (in Chinese)
15 Vanderwaeren L, Dok R, Voordeckers K, et al. Saccharomyces cerevisiae as a model system for eukaryotic cell biology, from cell cycle control to DNA damage response. International Journal of Molecular Sciences. 2022, doi: 10.3390/ijms231911665.
16 Parapouli M, Vasileiadis A, Afendra A S, et al. Saccharomyces cerevisiae and its industrial applications. Aims Microbiology, 2020, 6(1): 1-31.
17 Kaur M, Peshwani H, Goel M. Penicillium: A treasure trove for antimycobacterial and antioxidant metabolites// Deshmukh S K, Takahashi J A, Saxena S. Fungi Bioactive Metabolites. Singapore: Springer, 2024.
18 Jamal A, Henry N, Edmond-Jacques N. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Archives of Microbiology, 1994, 161: 345-351.
19 Maulu S. Utilizing Clostridium autoethanogenum for dietary protein in aquafeeds: Current progress in research and future perspectives. Journal of Applied Aquaculture, 2024, doi: 10 1080/10454438.2024.2338900.
20 Payne W J. Studies on bacterial utilization of uronic acids. Journal of Bacteriology, 1958, 76(3): 301-307.
21 Lima M, Muddana C, Xiao Z Y, et al. The new chassis in the flask: Advances in Vibrio natriegens biotechnology research. Biotechnology Advances, 2024, doi: 10.1016/j.biotechadv.2024.108464.
22 杨永富, 耿碧男, 宋皓月, 等. 运动发酵单胞菌底盘细胞研究现状及展望. 合成生物学, 2021, 2(1): 59-90. Yang Y F, Geng B N, Song H Y, et al. Progress and perspectives on developing Zymomonas mobilis as a chassis cell. Synthetic Biology Journal, 2021, 2(1): 59-90. (in Chinese)
23 Braga A, Gomes D, Rainha J, et al. Zymomonas mobilis as an emerging biotechnological chassis for the production of industrially relevant compounds. Bioresources and Bioprocessing, 2021, 128(8): 1-20.
24 Raphael L, Edward A B. The cellulosome of Clostridium thermocellum. Advances in Applied Microbiology, 1988, 33: 1-46.
25 肖艳, 刘亚君, 冯银刚, 等. 热纤梭菌在生物质能源开发中的合成生物学研究进展. 合成生物学, 2023, 4(6): 1055-1081. Xiao Y, Liu Y J, Feng Y G, et al. Progress in synthetic biology research of Clostridium thermocellum for biomass energy applications. Synthetic Biology Journal, 2023, 4(6): 1055-1081. (in Chinese)
26 Furey B, Slingerland K, Bauter M R, et al. Safety evaluation of Fy Protein™ (Nutritional Fungi Protein),a macroingredient for human consumption. Food and Chemical Toxicology, 2022, doi: 10.1016/j.fct.2022.113005.
27 Chen G Q, Zhang X, Liu X, et al. Halomonas spp. as chassis for low-cost production of chemicals. Applied Microbiology and Biotechnology, 2022, 106(21): 6977-6992.
28 毕心宇, 吕雪芹, 刘龙, 等. 我国微生物制造产业的发展现状与展望. 中国工程科学, 2021, 23(5): 59-68. Bi X Y, Lyu X Q, Liu L, et al. Development status and prospects of microbial manufacturing industry in China. Strategic Study of CAE, 2021, 23(5): 59-68. (in Chinese)
29 中国学科及前沿领域发展战略研究(2021—2035)项目组. 中国合成生物学2035发展战略. 北京: 科学出版社, 2023. Project Group on Development Strategies for Chinese Disciplines and Frontier Fields (2021-2035). China’s Synthetic Biology Development Strategy for 2035. Beijing: China Science Publishing and Media Ltd., 2023. (in Chinese)
30 刘柳, 吴林寰, 马俊才, 等. 全球专利微生物菌种近20年的保藏与发放情况分析. 微生物学报, 2021, 61(12): 3836-3843. Liu L, Wu L H, Ma J C, et al. Analysis of the deposits and samples of global patent microorganisms in the past 20 years. Acta Microbiologica Sinica, 2021, 61(12): 3836-3843. (in Chinese)
31 中国科技评估与成果管理研究会, 国家科技评估中心, 中国科学技术信息研究所. 中国科技成果转化年度报告(2022), 北京: 科学技术文献出版社出版, 2023. China Association for Science and Technology Evaluation and Achievement Management, National Center for Science and Technology Evaluation, Institute of Scientific and Technical Information of China. Annual Report on the Transformation of Scientific and Technological Achievements in China. Scientific and Technical Documentation Press, 2022. (in Chinese)
32 Ye J W, Lin Y N, Yi XQ, et al. Synthetic biology of extremophiles: A new wave of biomanufacturing. Trends in Biotechnology, 2023, 41(3): 342-357.
33 Tan D, Xue Y S, Aibaidula G, et al. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technology, 2011, 102(17): 8130-8136.
34 Chen G Q, Jiang X R. Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 2018, 50: 94-100.
35 侯冠一, 翁云宣, 刁晓倩, 等. 生物降解塑料产业现状与未来发展. 中国材料进展, 2022, 41(1): 52-65. Hou G Y, Weng Y X, Diao X Q, et al. The current development situation and future development of biodegradable plastic industry. Materials China, 2022, 41(1): 52-65. (in Chinese)
36 Ren Z W, Wang Z Y, Ding Y W, et al. Polyhydroxyalkanoates: The natural biopolyester for future medical innovations. Biomaterials Science, 2023, 11(18): 6013-6034.
Recommended Citation
CHEN, Guoqiang; WU, Fuqing; ZHENG, Shuang; DING, Jun; and SHENG, Junting
(2024)
"Current status and applications of microbial chassis strains for Chinese biomanufacturing industry,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 40
:
Iss.
1
, Article 2.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20241209006
Available at:
https://bulletinofcas.researchcommons.org/journal/vol40/iss1/2