•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

new energy, energy storage technology, electric energy storage, mechanical energy storage, chemical energy storage, hydrogen energy

Document Type

Information & Observation

Abstract

The achievement of the “dual carbon” goal is closely tied to the widespread implementation of renewable energy, however, renewable energy generation is characterized by intermittency and volatility. Advanced energy storage technology plays a crucial role in mitigating the fluctuations of new energy sources and enhancing their absorption capacity. Patents serve as important indicators of technological innovation, directly reflecting current research trends and future directions in energy storage technology. This paper primarily relies on the “WIPO IP Portal” website provided by the World Intellectual Property Organization to analyze the comprehensive strength of eight leading countries including the United States, China, France, the United Kingdom, Russia, Japan, Germany, and India. The analysis focuses on various energy storage technologies with statistics on patents issued by researchers or institutions from these countries. Additionally, this study examines China's current state of energy storage technology based on authorized patents and explores its future development trends across electric energy storage systems (EESS), mechanical energy storage systems (MESS), chemical energy storage systems (CESS), thermal energy storage systems (TESS), and hydrogen-based energy storage systems (HESS). It concludes that China’s current focus lies in core components or materials research for efficient cost reduction aiming at large-scale commercial applications. Furthermore, how to integrate a variety of energy storage into a system to use renewable energy such as wind and light for power supply and heating will be the focus of interest in the future.

First page

1468

Last Page

1485

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 Alamri B R, Alamri A R. Technical review of energy storage technologies when integrated with intermittent renewable energy// 2009 International Conference on Sustainable Power Generation and Supply. Nanjing: IEEE, 2009: 1-5.

2 Gallo A B, Simões-Moreira J R, Costa H K M, et al. Energy storage in the energy transition context: A technology review. Renewable and Sustainable Energy Reviews, 2016, 65: 800-822.

3 陈海生, 李泓, 马文涛, 等. 2021 年中国储能技术研究进展. 储能科学与技术, 2022, 11(3): 1052-1076. Chen H S, Li H, Ma W T, et al. Research progress of energy storage technology in China in 2021. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. (in Chinese)

4 Aneke M, Wang M H. Energy storage technologies and real life applications—A state of the art review. Applied Energy, 2016, 179: 350-377.

5 赵晏强, 周伯柱, 仇华炳. 国际储能关键技术竞争态势. 科技促进发展, 2017, 13(10): 745-751. Zhao Y Q, Zhou B Z, Qiu H B. The trends of energy storage technology. Science &Technology for Development, 2017, 13 (10): 745-751. (in Chinese)

6 张子岩, 张俊艳. 基于高质量专利的储能关键技术国际竞争态势. 储能科学与技术, 2022, 11(1): 321-334. Zhang Z Y, Zhang J Y. International competition of key energy storage technologies based on high-quality patents. Energy Storage Science and Technology, 2022, 11(1): 321-334. (in Chinese)

7 仇洁洁, 郜星月, 蒋贵凰. 专利视角下储能技术研究热点分析. 科技创新与应用, 2014, 4(32): 38-39. Qiu J J, Gao X Y, Jiang G H. Analysis of research hotspots of in energy storage technology from the perspective of patent. Technology Innovation and Application, 2014, 4(32): 38-39. (in Chinese)

8 Bradbury K. Energy Storage Technology Review. Carolina: Duke University, 2010: 1-34.

9 吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析. 电力学报, 2021, 36(5): 434-443. Wu H W, Wang J, Gong Y L, et al. Development status and application prospect analysis of energy storage technology. Journal of Electric Power, 2021, 36(5): 434-443. (in Chinese)

10 Afif A, Rahman S M, Tasfiah Azad A, et al. Advanced materials and technologies for hybrid supercapacitors for energy storage—A review. Journal of Energy Storage, 2019, 25: 100852.

11 周海国, 马春印. 一种超级电容器用导电涂料及其制备方法: 中国, CN115093738A. 2022-09-23. Zhou H G, Ma C Y. A conductive coating for supercapacitor and a preparation method thereof: China, CN115093738A. 2022-09-23. (in Chinese)

12 武义, 杨国庆, 李卫东, 等. 一种改性石墨烯复合材料及超级电容器: 中国, CN114709083A. 2022-07-05. Wu Y, Yang G Q, Li W D, et al. A Modified graphene composite material and its Supercapacitor: China, CN114709083A. 2022-07-05. (in Chinese)

13 唐政, 李卫东, 张俊峰. 一种超级电容器电极材料及其制备方法: 中国, CN115083793A. 2022-09-20. Tang Z, Li W D, Zhang J F. A supercapacitor electrode material and a preparation method thereof: China, CN115083793A. 2022-09-20. (in Chinese)

14 孔姝颖, 张禹, 向薪竹, 等. 一种电化学性能优异的柔性超级电容器电极的制备方法: 中国, CN115064392A. 2022-09-16. Kong S Y, Zhang Y, Xiang X Z, et al. A method for preparing flexible Supercapacitor electrode with excellent Electrochemical Performance: China, CN115064392A. 2022-09-16. (in Chinese)

15 Holla R V. Energy storage methods—Superconducting magnetic energy storage—A review. The Journal of Undergraduate Research, 2015, 8(1): 49-54.

16 Vulusala G V S, Madichetty S. Application of superconducting magnetic energy storage in electrical power and energy systems: A review. International Journal of Energy Research, 2018, 42(2): 358-368.

17 张芳, 沈浩 明. 用于 超导 磁储 能系 统的 斩波 器: 中国, CN111313702A. 2020-06-19. Zhang F, Shen H M. Chopper for superconducting magnetic energy storage system: China, CN111313702A. 2020-06-19. (in Chinese)

18 马文忠, 丁安敏, 陈爱忠, 等. 一种超导磁储能系统及其 DC/DC 换流器: 中国, CN113572358A, 2021-10-29. Ma W Z, Ding A M, Chen A Z, et al. A superconducting magnetic energy storage system and its DC/DC Converter: China, CN113572358A. 2021-10-29. (in Chinese)

19 张馨丹, 王银顺, 王建宏, 等. 一种高温超导储能磁体: 中国, CN114743752A. 2022-07-12. Zhang X D, Wang Y S, Wang J H, et al. A high temperature superconducting energy storage magnet: China, CN11474375 2A. 2022-07-12. (in Chinese)

20 刘忠林, 周立平. 一种新型混合结构的高温超导储能磁体一 种新 型混 合结 构的 高温 超导 储能 磁体: 中国, CN113690010A. 2021-11-23. Liu Z L, Zhou L P. A new hybrid structure high temperature superconducting energy storage magnet: China, CN11369001 0A. 2021-11-23. (in Chinese)

21 郭树强, 任丽, 徐颖, 等. 一种基于磁体状态预测的超导储能系统控制方法及装置: 中国, CN114156916A. 2023-07-25. Guo S Q, Ren L, Xu Y, et al. A control method and device of superconducting energy storage system based on magnet state prediction: China, CN114156916A. 2023-07-25. (in Chinese)

22 Kong Y G, Kong Z G, Liu Z Q, et al. Pumped storage power stations in China: The past, the present, and the future. Renewable and Sustainable Energy Reviews, 2017, 71: 720-731.

23 叶萌, 黄观金, 张国翊, 等. 一种用于抽水蓄能电厂的 5G 融合定位装置: 中国, CN114200497A. 2022-03-18. Ye M, Huang G J, Zhang G Y, et al. A 5G fusion positioning device for pumped storage power plants: China, CN11420049 7A. 2022-03-18. (in Chinese)

24 黄健, 侯健生, 季克勤, 等. 基于风-光-水-氢一体化的建筑供能系统: 中国, CN114781872A. 2022-07-22. Huang J, Hou J S, Ji K J, et al. Building energy supply system based on wind-light-water-hydrogen integration: China, CN114781872A. 2022-07-22. (in Chinese)

25 陈昕, 何杰, 张鹏, 等. 一种服务于海绵城市的分布式抽水蓄能电站: 中国, CN217480110U. 2022-09-23. Chen X, He J, Zhang P, et al. A distributed pumped storage power station serving sponge city: China, CN217480110U. 2022-09-23. (in Chinese)

26 Budt M, Wolf D, Span R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments. Applied Energy, 2016, 170: 250-268.

27 Al Katsaprakakis D, Christakis D G, Stefanakis I, et al. Technical details regarding the design, the construction and the operation of seawater pumped storage systems. Energy, 2013, 55: 619-630.

28 宋大为, 罗永泉. 利用地下废弃空间进行压缩空气储能的方法: 中国, CN114458380A. 2022-05-10. Song D W, Luo Y Q. Method of compressed air energy storage using underground waste space: China, CN11445838 0A. 2022-05-10. (in Chinese)

29 谢宁宁, 孙长平, 尹立坤, 等. 一种快速响应的光热压缩空气储能系统及方法: 中国, CN114517716A. 2022-05-20. Xie N N, Sun C P, Yin L K, et al. A fast response photothermal compressed air energy storage system and method: China, CN114517716A. 2022-05-20. (in Chinese)

30 王勇. 一种用于空气压缩储能的智能型低成本储气装置: 中国, CN115095788A. 2022-09-23. Wang Y. An intelligent low-cost gas storage device for compressed air energy storage: China, CN115095788A. 2022-09-23. (in Chinese)

31 Amiryar M, Pullen K. A review of flywheel energy storage system technologies and their applications. Applied Sciences, 2017, 7(3): 286.

32 Mousavi G S M, Faraji F, Majazi A, et al. A comprehensive review of Flywheel Energy Storage system technology. Renewable and Sustainable Energy Reviews, 2017, 67: 477-490.

33 胡东旭, 卫炳坤, 魏路, 等. 一种涡轮直驱飞轮储能装置: 中国, CN114865842A. 2022-08-05. Hu D X, Wei B K, Wei L, et al. A turbine direct drive flywheel energy storage device: China, CN114865842A. 2022-08-05. (in Chinese)

34 陈益广, 藏柏棋, 苏江. 一种飞轮储能系统用高速永磁同步电机的内置式永磁转子: 中国, CN115021444A. 2022-09-06. Chen Y G, Zang B Q, Su J. A built-in permanent magnet rotor for high speed permanent magnet synchronous motor for flywheel energy storage system: China, CN115021444A. 2022-09-06. (in Chinese)

35 陈辉, 许春, 田延贵, 等. 一种基于飞轮储能辅助的抽水蓄能调峰、调频电站: 中国, CN217427681U. 2022-09-13. Chen H, Xu C, Tian Y G, et al. A kind of pumped-storage peak-regulating and frequency-regulating power station based on flywheel energy storage assistance: China, CN217427681U. 2022-09-13. (in Chinese)

36 李树胜, 王佳良, 李光军, 等. 基于飞轮储能的一体化供电系统装置及控制方法: 中国, CN114977239A. 2022-08-30. Li S S, Wang J L, Li G J, et al. integrated power supply system device and control method based on flywheel energy storage: China, CN114977239A. 2022-08-30. (in Chinese)

37 洪烽, 梁璐, 贾欣怡, 等. 一种火电-飞轮储能协同调频控制方法及系统: 中国, CN115000991A. 2022-09-02. Hong F, Liang L, Jia X Y, et al. a thermal power-flywheel energy storage collaborative frequency modulation control method and system: China, CN115000991A. 2022-09-02. (in Chinese)

38 李相俊, 姜倩, 贾学翠, 等. 一种含飞轮储能的风电场多目标协调频率优化方法和装置: 中国, CN202210893920. 2022-09-23. Li X J, Jiang Q, Jia X C, et al. A multi-objective coordinated frequency optimization method and device for wind farms with flywheel energy storage: China, CN202210893920. 2022-09-23. (in Chinese)

39 Sazali N, Wan Salleh W N, Jamaludin A S, et al. New perspectives on fuel cell technology: A brief review. Membranes, 2020, 10(5): 99. (in Chinese)

40 Mekhilef S, Saidur R, Safari A. Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 2012, 16(1): 981-989.

41 齐志 刚. 一种 具有 高效 冷却 系统 的燃 料电 池: 中国,CN115149039A. 2022-10-04. Qi Z G. A fuel cell with efficient cooling system: China, CN115149039A. 2022-10-04. (in Chinese)

42 齐志刚. 一种具有防冻功能的寒冷地区用燃料电池装置: 中国, CN115149031A. 2022-10-04. Qi Z G. A fuel cell device with anti-freezing function for cold areas: China, CN115149031A. 2022-10-04. (in Chinese)

43 赵海柱, 刘坚, 陈志星. 一种氢气排放处理系统及燃料电池: 中国, CN115084602A. 2022-09-20.Zhao H G, Liu J, Chen Z X. A hydrogen emission treatment system and fuel cell: China, CN115084602A. 2022-09-20. (in Chinese)

44 陆维, 宋耀颖, 孙颖, 等. 燃料电池、燃料电池电堆和燃料电池电堆系统: 中国, CN115133062A. 2022-09-30.

45 Lu W, Song Y Y, Sun Y, et al. Fuel cell, fuel cell stack and fuel cell stack system: China, CN115133062A. 2022-09-30. (in Chinese)

46 Li M, Bi X X, Wang R Y, et al. Relating catalysis between fuel cell and metal-air batteries. Matter, 2020, 2(1): 32-49.

47 Wang C L, Yu Y C, Niu J J, et al. Recent progress of metal– air batteries—A mini review. Applied Sciences, 2019, 9(14): 2787.

48 努丽燕娜, 张鹏, 曾小勤, 等. 一种镁金属空气电池正极催化材料及其制备方法: 中国, CN115000430A. 2022-09-02. Nuli Y N, Zhang P, Zeng X Q, et al. A magnesium metal air battery positive electrode catalytic material and its preparation method: China, CN115000430A. 2022-09-02. (in Chinese)

49 徐吉静, 郑丽君, 李飞. 一种金属空气电池用光热耦合双功能催化剂及其应用: 中国, CN114883582A. 2022-08-09.Xu J J, Zheng L J, Li F. A photothermal coupled bifocal catalyst for metal-air batteries and its application: China, CN114883582A. 2022-08-09. (in Chinese)

50 张涛, 张易楠, 孙壮. 一种金属空气电池负极表面疏水保护层及其制备方法和应用: 中国, CN114824268A. 2022-07-29. Zhang T, Zhang Y N, Sun Z. A hydrophobic protective layer for metal air battery negative electrode surface, preparation method and application thereof: China, CN114824268A. 2022-07-29. (in Chinese)

51 刘汉康, 周天培, 马桂鑫, 等. 金属空气电池清洗液及其制备方法、应用: 中国, CN115109655A. 2022-09-27. Liu H K, Zhou T P, Ma G X, et al. Metal air battery cleaning fluid and its preparation method and application: China, CN115109655A. 2022-09-27. (in Chinese)

52 任晓迪, 邱呈雨. 一种用于超氧化物金属空气电池的混合有机电解液: 中国, CN115101856A. 2022-09-23. Ren X D, Qiu C Y. A kind of mixed organic electrolyte for superoxide metal air battery: China, CN115101856A. 2022-09-23. (in Chinese)

53 杨树斌. 铅酸电池的正极铅膏、正极及其制备方法、电池和电动车: 中国, CN114975895A. 2022-08-30. Yang S B. Positive electrode lead paste, positive electrode and preparation method of lead-acid battery, battery and electric vehicle: China, CN114975895A. 2022-08-30. (in Chinese)

54 杨树斌. 金属铅复合材料及其用途、铅酸电池电极板栅及其制备方法、电极、电池、电动车: 中国, CN114976036A. 2022-08-30. Yang S B. Metal lead composite material and its application, lead-acid battery electrode plate grid and its preparation method, electrode, battery, electric vehicle: China, CN114976036A. 2022-08-30. (in Chinese)

55 杨树斌. 铅酸电池的负极铅膏、负极及其制备方法、铅烯电池、电动车: 中国, CN114976291A. 2022-08-30. Yang S B. Negative lead paste, negative electrode and preparation method of lead-acid battery, lead-ene battery, electric vehicle: China, CN114976291A. 2022-08-30. (in Chinese)

56 杭州明, 杨丽, 史立秋, 等. 一种镍氢电池负极用V基储氢合金及其制备方法和应用: 中国, CN114725363A. 2022-07-08. Hang Z M, Yang L, Shi L Q, et al. A V-base hydrogen storage alloy for Ni-Mh battery negative electrode and its preparation method and application: China, CN114725363A. 2022-07-08. (in Chinese)

57 范永弟. 一种基于模组成型的一体化镍氢电池: 中国, CN114899504A. 2022-08-12. Fan Y D. The invention relates to an integrated nickel-metal hydride battery based on mode composition: China, CN114899504A. 2022-08-12. (in Chinese)

58 卞立宪, 卞榕毅, 卢佳萍, 等. 圆柱形高压镍氢电池生产工艺: 中国, CN115117466A. 2022-09-27. Bian L X, Bian R Y, Lu J P, et al. Production process of cylindrical high-voltage nickel-metal hydride battery: China, CN115117466A. 2022-09-27. (in Chinese)

59 Koehler U. General overview of non-lithium battery systems and their safety issues// Electrochemical Power Sources: Fundamentals, Systems, and Applications. Amsterdam: Elsevier, 2019: 21-46.

60 Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium-and sodium-ion batteries. Advanced Energy Materials, 2020, 10 (1): 1902485.

61 罗明洋, 雷英, 罗涵钰, 等. 一种高镍三元正极材料及其制备方法和锂离子电池: 中国, CN115028216A. 2022-09-09.Luo M Y, Lei Y, Luo H Y, et al. A high-nickel ternary cathode material and its preparation method and lithium-ion battery: China, CN115028216A. 2022-09-09. (in Chinese)

62 周永宁, 马萃, 李璕琭. 一种高容量氧变价钠离子电池正极材料及其制备方法: 中国, CN115010186A. 2022-09-06.Zhou Y N, Ma C, Li X L. A positive electrode material for high-capacity oxy-variant sodium ion battery and its preparation method: China, CN115010186A. 2022-09-06. (in Chinese)

63 金庭安, 赵珑, 冉闯, 等. 一种钠离子电池泡沫石墨烯负极的制备方法: 中国, CN108615887A. 2021-09-07. Jin T A, Zhao L, Ran C, et al. Preparation method of graphene anode for sodium ion cell foam: China, CN108615887A. 2021-09-07. (in Chinese)

64 黄玉希, 刘鹏, 徐雄文, 等. 一种电解液添加剂、电解液及钠离子电池: 中国, CN114649590A. 2022-06-21. Huang Y X, Liu P, Xu X W, et al. A kind of electrolyte additive, electrolyte and sodium ion battery: China, CN114649590A. 2022-06-21. (in Chinese)

65 许名飞, 许赫奕, 王飞蓉, 等. 一种提高钠离子电池高温循环性能的电解液: 中国, CN114865090A. 2022-08-05. Xu M F, Xu H Y, Wang F R, et al. An electrolyte for improving high temperature cycle performance of sodium ion battery: China, CN114865090A. 2022-08-05. (in Chinese)

66 Jiang T Y, Lin H, Sun Q Y, et al. Recent progress of electrode materials for zinc bromide flow battery. International Journal of Electrochemical Science, 2018, 13(6): 5603-5611.

67 许鹏程, 张华民, 李先锋, 等. 一种无隔膜静态锌溴电池: 中国, CN108134141A. 2018-06-08. Xu P C, Zhang H M, Li X F, et al. A static Zinc-bromine battery without diaphragm: China, CN108134141A, 2018-06-08. (in Chinese)

68 俞海云, 姚思远, 胡文旭, 等. 一种用于锌溴电池的电解液: 中国, CN114725538A. 2022-07-08. Yu H Y, Yao S Y, Hu W X, et al. An electrolyte for Zincbromine battery: China, CN114725538A. 2022-07-08. (in Chinese)

69 赖勤志, 张华民, 李先锋, 等. 一种锌溴液流电池性能恢复方法: 中国, CN108134120A. 2018-06-08. Lai Q Z, Zhang H M, Li X F, et al. A method for performance recovery of Zinc-bromine flow battery: China, CN108134120A. 2018-06-08. (in Chinese)

70 陈维, 郑新华. 一种水系锌溴电池: 中国, CN113991191A. 2022-01-28. Chen W, Zheng X H. A water-based Zinc-bromine battery: China, CN113991191A. 2022-01-28. (in Chinese)

71 Kear G, Shah A A, Walsh F C. Development of the allvanadium redox flow battery for energy storage: A review of technological, financial and policy aspects. International Journal of Energy Research, 2012, 36(11): 1105-1120.

72 付武祥. 一种全钒氧化还原电池电极材料的制备方法: 中国, CN112897581A. 2021-06-04. Fu W X. Preparation method of electrode Material for allvanadium redox battery: China, CN112897581A. 2021-06-04. (in Chinese)

73 Carrillo A J, González-Aguilar J, Romero M, et al. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials. Chemical Reviews, 2019, 119(7): 4777-4816.

74 张叶龙, 谈玲华, 丁玉龙, 等. 一种高效传质传热的热化学吸附储热材料及其制备方法: 中国, CN114015418A. 2022-02-08.Zhang Y L, Tan L H, Ding Y L, et al. A thermochemical adsorption heat storage material with high efficiency for mass and heat transfer and a preparation method there of: China, CN114015418A. 2022-02-08. (in Chinese)

75 赵倩, 肖益民, 林建泉, 等. 一种热化学吸附储热复合材料及其应用: 中国, CN114479775A. 2022-05-13. Zhao Q, Xiao Y M, Lin J Q, et al. A thermochemical adsorption heat storage composite and its application: China, CN114479775A. 2022-05-13. (in Chinese)

76 肖刚, 袁鹏, 倪明江, 等. 热化学储热材料、热化学储热模块及制备方法: 中国, CN113582240A. 2021-11-02. Xiao G, Yuan P, Ni M J, et al. Thermochemical heat storage material, thermochemical heat storage module and Preparation Method: China, CN113582240A. 2021-11-02. (in Chinese)

77 宣益民, 刘向雷, 宋超, 等. 一种多孔复合钙基颗粒及其制备方法和应用: 中国, CN113308228A. 2021-08-27.Xuan Y M, Liu X L, Song C, et al. A porous composite calcium-based particle and its preparation method and application: China, CN113308228A. 2021-08-27. (in Chinese)

78 刘磊, 周子健, 刘小伟, 等. 一种 Mg 修饰的低反应温度、高储 热密 度钴 基热 化学 储热 材料 及其 制备 方法: 中国, CN115058230A. 2022-09-16. Liu L, Zhou Z J, Liu X W, et al. Cobalt based thermochemical heat storage material modified with Mg at low reaction temperature and high heat storage density and its preparation method: China, CN115058230A. 2022-09-16. (in Chinese)

79 Panchal H, Patel J, Chaudhary S. A comprehensive review of solar cooker with sensible and latent heat storage materials. International Journal of Ambient Energy, 2019, 40(3): 329-334.

80 Khatod K J, Katekar V P, Deshmukh S S. An evaluation for the optimal sensible heat storage material for maximizing solar still productivity: A state-of-the-art review. Journal of Energy Storage, 2022, 50: 104622.

81 孙东, 宋长山, 范路, 等. 一种相变储热装置及其储热方法: 中国, CN114440681A. 2022-05-06. Sun D, Song C S, Fan L, et al. A phase-change heat storage device and a heat storage method: China, CN114440681A. 2022-05-06. (in Chinese)

82 李元元, 程晓敏, 王启扬, 等. 一种太阳能供暖用悬浮式显热-潜热储热装置: 中国, CN103557733A. 2014-02-05. Li Y Y, Cheng X M, Wang Q Y, et al. A kind of suspended sensible heat-latent heat storage device for solar heating: China, CN103557733A. 2014-02-05. (in Chinese)

83 曾阔, 左宏杨, 孔佳月, 等. 一种热解反应装置及分布式聚光太阳能驱动热解反应系统: 中国, CN113403097A. 2021-09-17. Zeng K, Zuo H Y, Kong J Y, et al. A pyrolysis reaction device and a distributed concentrated solar energy driven pyrolysis reaction system: China, CN113403097A. 2021-09-17. (in Chinese)

84 欧阳鑫南, 程鹏, 陈北领, 等. 太阳能和含水层储能耦合热量平衡系统: 中国, CN212673413U. 2021-03-09. Ouyang X N, Cheng P, Chen B L, et al. Solar energy and aquifer energy storage coupling heat balance system: China, CN212673413U. 2021-03-09. (in Chinese)

85 Fleuchaus P, Schüppler S, Godschalk B, et al. Performance analysis of aquifer thermal energy storage (ATES). Renewable Energy, 2020, 146: 1536-1548.

86 Fleuchaus P, Schüppler S, Bloemendal M, et al. Risk analysis of high-temperature aquifer thermal energy storage (HTATES). Renewable and Sustainable Energy Reviews, 2020, 133: 110153.

87 欧阳鑫南, 戴志清, 邬小波, 等. 一种中深层高温含水层储能井回灌系统: 中国, CN113686035A. 2021-11-23. Ouyang X N, Dai Z Q, Wu X B, et al. A recharge system for energy storage well in middle and deep layer with high temperature aquifer: China, CN113686035A. 2021-11-23. (in Chinese)

88 杜刚, 万军, 欧阳鑫南. 一种含水层储能井的二次成井方法: 中国, CN111395995A. 2020-07-10. Du G, Wan J, Ouyang X N. A secondary well completion method for aquifer energy storage well: China, CN111395995 A. 2020-07-10. (in Chinese)

89 欧阳鑫南, 程鹏, 孟超, 等. 一种燃气三联供与含水层储能系统耦合供能系统: 中国, CN212618577U. 2021-02-26. Ouyang X N, Cheng P, Meng C, et al. A coupling energy supply system of gas triple supply and aquifer energy storage system: China, CN212618577U. 2021-02-26. (in Chinese)

90 Dzido A, Krawczyk P, Wołowicz M, et al. Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications. Renewable Energy, 2022, 184: 727-739.

91 Borri E, Tafone A, Zsembinszki G, et al. Recent trends on liquid air energy storage: A bibliometric analysis. Applied Sciences, 2020, 10(8): 2773.

92 季伟, 郭璐娜, 陈六彪, 等. 半地下式液态空气储能发电系统: 中国, CN215633191U. 2022-01-25. Ji W, Guo L N, Chen L B, et al. Semi-underground liquid air energy storage power generation system: China, CN2156331 91U. 2022-01-25. (in Chinese)

93 季伟, 郭璐娜, 陈六彪, 等. 液态空气储能发电系统: 中国, CN113202588A. 2021-08-03. Ji W, Guo L N, Chen L B, et al. Liquid air energy storage power generation system: China, CN113202588A. 2021-08-03. (in Chinese)

94 王晨, 卞咏, 薛鲁, 等. 一种面向工程应用的液态空气储能系统及方法: 中国, CN114658546A. 2022-06-24. Wang C, Bian Y, Xue L, et al. Liquid air energy storage system for engineering application and method: China, CN114658546A. 2022-06-04. (in Chinese)

95 折晓会, 王晨, 张小松, 等. 液态空气储能冷-热-电-空气四联供装置及方法: 中国, CN114087847A. 2022-02-25. Zhe X H, Wang C, Zhang X S, et al. Liquid air energy storage cold-hot-electric-air quadruple power supply device and method: China, CN114087847A. 2022-02-25. (in Chinese)

96 季伟, 郭璐娜, 陈六彪, 等. 氢气与液态空气的联合储能发电系统: 中国, CN113294243A. 2021-08-24. Ji W, Guo L N, Chen L B, et al. Hydrogen and liquid air combined energy storage power generation system: China, CN113294243A. 2021-08-24. (in Chinese)

97 王春生, 谢浩, 曹原, 等. 一种含光伏发电和液态空气储能的 微电 网优 化调 度方 法: 中国, CN113659627A. 2021-11-16. Wang C S, Xie H, Cao Y, et al. A microgrid optimization scheduling method containing photovoltaic power generation and liquid air energy storage: China, CN113659627A. 2021-11-16. (in Chinese)

98 Schrotenboer A H, Veenstra A A T, Uit Het Broek M A J, et al. A green hydrogen energy system: Optimal control strategies for integrated hydrogen storage and power generation with wind energy. Renewable and Sustainable Energy Reviews, 2022, 168: 112744.

99 Yue M L, Lambert H, Pahon E, et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 2021, 146: 111180.

100 吴勇, 余洪蒽, 谢镭, 等. 一种镁基储氢材料及其制备方法: 中国, CN115108532A. 2022-09-27. Wu Y, Yu H E, Xie L, et al. A magnesium-based hydrogen storage material and its preparation method: China, CN115108532A. 2022-09-27. (in Chinese)

101 赵立前, 刘春枝, 李国辉. 一种利用固态金属储氢和供氢的加氢系统: 中国, CN115095791A. 2022-09-23. Zhao L Q, Liu C Z, Li G H. A hydrogenation system using solid metal for hydrogen storage and hydrogen supply: China, CN115095791A. 2022-09-23. (in Chinese)

102 冯宪高, 魏颖, 陈世福, 等. 一种高压氢气地下储存结构及存储方式: 中国, CN115059869A. 2022-09-16. Feng X G, Wei Y, Chen S F, et al. A high-pressure hydrogen underground storage structure and storage method: China, CN115059869A. 2022-09-16. (in Chinese)

103 袁卓伟, 董朝正, 宫丽丽, 等. 一种复合成型的99MPa级加氢站用储氢容器制法: 中国, CN115091732A. 2022-09-23. Yuan Z W, Dong C Z, Gong L L, et al. A composite forming hydrogen storage container for 99MPa grade hydrogenation station: China, CN115091732A. 2022-09-23. (in Chinese)

104 孙崇正, 李玉星, 樊欣, 等. 一种海上氢能储运系统: 中国, CN115095790A. 2022-09-23.Sun C Z, Li Y X, Fan X, et al. An offshore hydrogen energy storage and transportation system: China, CN115095790A. 2022-09-23. (in Chinese)

Share

COinS