•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

hypersonic technology; hypersonic weapon; power propulsion technology; navigation guidance and control technology; new material and thermal protection technology; hypersonic wind tunnel; hypersonic defense system

Document Type

Information & Observation

Abstract

Hypersonic technology is a key technology in the aerospace field in the future and is of very important strategic and forward-looking significance. Using bibliometric methods, it is found that research on hypersonic technology is mainly concentrated in the military field, among which power propulsion technology, navigation guidance and control technology, thermal protection technology and new materials are important research directions in this field. After sorting out the research and development situation of various countries, it is found that the relevant core technologies related to the development of hypersonic weapons are still the focus of future research. At the same time, accelerating the deployment of hypersonic defense systems and strengthening cooperation with partner countries in technology research and development, joint air defense and missile defense to enhance regional defense and deterrence are also priorities for future deployment of countries.

First page

1106

Last Page

1120

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 Anderson J D. Hypersonic and High Temperature Gas Dynamics. New York: McGraw-Hill Book Company, 1989
2 Tsien H S. Similarity laws of hypersonic flows. Journal of Mathematics and Physics, 1946, 25: 247-251.
3 Sänger E, Szames A D. From the silverbird to interstellar voyages// 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: AIAA, 2003: IAC-03-IAA.2.4.a.07.
4 Sobolev D A, Sollinger G. Eugen Sanger’s hypersonic bomber project and idea of it realization in the USSR in 1946// 2017 International Workshop on Engineering Technologies and Computer Science (EnT). Moscow: IEEE, 2017: 68-69.
5 Eckardt D. The 1 × 1 m hypersonic wind tunnel Kochel/Tullahoma 1940–1960. CEAS Space Journal, 2015, 7: 23-36.
6 Bertin J J, Cummings R M. Fifty years of hypersonics: Where we’ve been, where we’re going. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536.
7 Speier R H, Nacouzi G, Lee C, et al. Hypersonic Missile Nonproliferation: Hindering the Spread of a New Class of Weapons, RR-2137-CC. Santa Monica: RAND Corporation, 2017.
8 柴山. 高超声速武器优势何在. 解放军报, 2021-02-04(07).Chai S. What are the advantages of hypersonic weapons. PLA Daily, 2021-02-04(07). (in Chinese)
9 Congressional Budget Office. U.S. Hypersonic Weapons and Alternatives, 58255. Washington DC: Congressional Budget Office, 2023.
10 杨诗瑞. 印度首次试射高超声速飞行器. 太空探索, 2020, (1): 65-67.Yang S R. India test-fired a hypersonic vehicle for the first time. Space Exploration, 2020, (1): 65-67. (in Chinese)
11 Viola N, Fusaro R, Saracoglu B, et al. Main challenges and goals of the H2020 STRATOFLY project. Aerotecnica Missili & Spazio, 2021, 100(2): 95-110.
12 艾瑞咨询. 2021年中国超音速临近空间飞行器行业研究报告. 上海: 上海艾瑞市场咨询有限公司, 2021.Iresearch. 2021 China Supersonic Proximity Space Vehicle Industry Research Report. Shanghai: Iresearch, 2021. (in Chinese)
13 刘晓波, 罗月培, 孙杭义. 美俄高超声速武器动力技术发展趋势研究. 战术导弹技术, 2021, (6): 111-120.Liu X B, Luo Y P, Sun H Y. Research on development trends for the propulsion technology of hypersonic weapons in the United States and Russia. Tactical Missile Technology, 2021, (6): 111-120. (in Chinese)
14 李旭彦, 郑星, 薛瑞. 超燃冲压发动机技术发展现状及相关建议. 科技中国, 2019, (2): 5-8.Li X Y, Zheng X, Xue R. Development status of scramjet technology and related suggestions. China Scitechnology Business, 2019, (2): 5-8. (in Chinese)
15 Jiang Z L, Zhang Z J, Liu Y F, et al. Criteria for hypersonic airbreathing propulsion and its experimental verification. Chinese Journal of Aeronautics, 2021, 34(3): 94-104.
16 张升升, 郑雄, 吕雅, 等. 国外组合循环动力技术研究进展. 科技导报, 2020, 38(12): 33-53.Zhang S S, zheng X, Lü Y, et al. Research progress of oversea combined cycle propulsion technology. Science & Technology Review, 2020, 38(12): 33-53. (in Chinese)
17 张玫, 张蒙正, 刘昊. 火箭基组合循环动力研究进展. 科技导报, 2020, 38(12): 54-68.Zhang M, Zhang M Z, Liu H. Progress and analysis of rocket based combined cycle (RBCC) propulsion system. Science & Technology Review, 2020, 38(12): 54-68. (in Chinese)
18 陈敏, 贾梓豪. 涡轮基组合循环动力关键技术进展. 科技导报, 2020, 38(12): 69-84.Chen M, Jia Z H. Progress and prospect of key technologies for turbine based combined cycle engine. Science & Technology Review, 2020, 38(12): 69-84. (in Chinese)
19 韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究. 推进技术, 2017, 38(2): 298-305.Wei B X, Ling W H, Gang Q, et al. Analysis of key technologies and propulsion performance research of TRRE engine. Journal of Propulsion Technology, 2017, 38(2): 298-305. (in Chinese)
20 南向谊, 刘轶, 马元, 等. 空气涡轮火箭发动机热力过程及工作特性. 空气动力学学报, 2022, 40(1): 181-189.Nan X Y, Liu Y, Ma Y, et al. Thermodynamic process and operating characteristics of air turbo rocket engine. Acta Aerodynamica Sinica, 2022, 40(1): 181-189. (in Chinese)
21 张远, 黄旭, 路坤锋, 等. 高超声速飞行器控制技术研究进展与展望. 宇航学报, 2022, 43(7): 866-879.Zhang Y, Huang X, Lu K F, et al. Research progress and prospect of the hypersonic flight vehicle control technology. Journal of Astronautics, 2022, 43(7): 866-879. (in Chinese)
22 Li G, Xu L W, He H, et al. A control method of hypersonic vehicle based on the structured singular value theory. Applied Mechanics and Materials, 2011, 128-129: 761-764.
23 Zhu W B. Robust control for air-breathing hypersonic cruise vehicles// Proceedings of 2013 Chinese Intelligent Automation Conference. Lecture Notes in Electrical Engineering. Berlin: Springer, 2013, 255: 191-198.
24 Wang X, Feng D Z, Lin Y. Attitude control of unmanned hypersonic test vehicle// 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics. Shenzhen: IEEE, 2008: 1-5.
25 Zhang H J, Yang M, Bao W M, et al. Short-frame fountain code for plasma sheath with “communication windows”. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15569-15579.
26 Lu P L, Liu X D. Robust fault-tolerant H∞ control for hypersonic vehicle attitude control system// Proceedings of the 30th Chinese Control Conference. Yantai: IEEE, 2011: 4313-4316.
27 Wang J, Zong Q, He X, et al. Adaptive finite-time control for a flexible hypersonic vehicle with actuator fault. Mathematical Problems in Engineering, 2013, 2013: 920796.
28 Ji H B, Wang L, Song Z Y, et al. Trajectory tracking based on time-varying sliding mode controller for hypersonic vehicle with aileron stuck// 2017 36th Chinese Control Conference (CCC). Dalian: IEEE, 2017: 985-989.
29 Castle E, Csanádi T, Grasso S, et al. Processing and properties of high-entropy ultra-high temperature carbides. Scientific Reports, 2018, 8: 8609.
30 Calzolari A, Oses C, Toher C, et al. Plasmonic high-entropy carbides. Nature Communications, 2022, 13(1): 5993.
31 Wen Z H, Tang Z Y, Liu Y W, et al. Ultrastrong and high thermal insulating porous high-entropy ceramics up to 2000℃. Advanced Materials, 2024, 36(14): e2311870.
32 高铁锁, 江涛, 丁明松, 等. 再入体碳基防热材料烧蚀流场红外辐射模拟. 红外与激光工程, 2023, 52(5): 231-241.Gao T S, Jiang T, Ding M S, et al. Simulation of flow field infrared radiation over reentry vehicle with ablation of carbon-based thermal protection material. Infrared and Laser Engineering, 2023, 52(5): 231-241. (in Chinese)
33 沈斌贤, 曾磊, 刘骁, 等. 高超声速飞行器主动质量引射热防护技术研究进展. 空气动力学学报, 2022, 40(6): 1-13.Shen B X, Zeng L, Liu X, et al. Research progress of thermal protection technique by activemass injection for hypersonic vehicle. Acta Aerodynamica Sinica, 2022, 40(6): 1-13. (in Chinese)
34 邢亚娟, 孙波, 高坤, 等. 航天飞行器热防护系统及防热材料研究现状. 宇航材料工艺, 2018, 48(4): 9-15.Xing Y J, Sun B, Gao K, et al. Research status of thermal protection system and thermal protection materials for aerospace vehicles. Aerospace Materials & Technology, 2018, 48(4): 9-15. (in Chinese)
35 艾邦成, 陈思员, 陈智, 等. 关于高超声速飞行器新热障的认知与探讨. 气体物理, 2023, 8(4): 1-17.Ai B C, Chen S Y, Chen Z, et al. Cognition and discussion on new thermal barrier of hypersonic vehicles. Physics of Gases, 2023, 8(4): 1-17. (in Chinese)
36 姜宗林. 高超声速高焓风洞试验技术研究进展. 空气动力学学报, 2019, 37(3): 347-355.Jiang Z L. Progresses on experimental techniques of hypersonic and high-enthalpy wind tunnels. Acta Aerodynamica Sinica, 2019, 37(3): 347-355. (in Chinese)
37 张君彪, 熊家军, 兰旭辉, 等. 一种高超声速滑翔飞行器轨迹智能预测方法. 宇航学报, 2022, 43(4): 413-422.Zhang J B, Xiong J J, Lan X H, et al. An intelligent prediction method of hypersonic glide vehicle trajectory. Journal of Astronautics, 2022, 43(4): 413-422. (in Chinese)
38 尚敦敏, 史峰. 高超音速导弹防御难在何处. 中国国防报, 2023-05-16(04).Shang D M, Shi F. What is the difficulty of hypersonic missile defense. ZhongGuo Guofang Bao, 2023-05-16(04). (in Chinese)
39 刘思彤, 张占月, 刘达, 等. 高超声速武器防御装备体系发展及顶层思考. 世界科技研究与发展, 2022, 44(5): 618-630.Liu S T, Zhang Z Y, Liu D, et al. Development and top-level thinking of hypersonic weapon defense equipment system. World Sci-Tech R&D, 2022, 44(5): 618-630. (in Chinese)
40 Yuan S R, Shi L, Zhai Y T, et al. An unsupervised classification method of flight states for hypersonic targets based on hyperspectral features. Chinese Journal of Aeronautics, 2023, 36(5): 434-446.
41 Liu S X, Liu S J, Yan B B, et al. Interception of a hypersonic vehicle by low-speed interceptors: Novel perspectives and cost optimisation. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2022, 70(6): 143537.
42 李茜. 2022高超声速技术进展. 航空动力, 2023, (1): 15-18.Li X. Progress of hypersonic technology in 2022. Aerospace Power, 2023, (1): 15-18. (in Chinese)
43 杨慧君. S-550:未来俄罗斯空天防御的中坚力量. 太空探索, 2023, (4): 62-66.Yang H J. S-550: The backbone of Russian air and space defense in the future. Space Exploration, 2023, (4): 62-66. (in Chinese)
44 张攀峰, 詹世革. 从国家自然科学基金资助看高超声速流动研究的发展现状. 航空学报, 2015, 36(1): 1-6.Zhang P F, Zhan S G. Development of hypersonic flow research in China based on supported projects of NSFC. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 1-6. (in Chinese)
45 苑桂萍, 胡冬冬. 近二十年来美军高超声速领域科研投入分析. 飞航导弹, 2019, (8): 77-83.Yuan G P, Hu D D. Analysis of US army’s scientific research investment in hypersonicfield in recent twenty years. Aerodynamic Missile Journal, 2019, (8): 77-83. (in Chinese)
46 苑桂萍, 肖益, 余明璐. 美军2018—2024财年高超声速技术领域科研预算分析. 战术导弹技术, 2023, (5): 64-72.Yuan G P, Xiao Y, Yu M L. Analysis of US military research budget in hypersonic technology in FY 2018–2024. Tactical Missile Technology, 2023, (5): 64-72. (in Chinese)

Share

COinS