Bulletin of Chinese Academy of Sciences (Chinese Version)


data sovereignty,data security,policy instruments,Latent Dirichlet Allocation (LDA)

Document Type

Policy & Management Research


Data sovereignty has become an important component of national sovereignty in the dual context of the digital economy development and the overall national security concept. Major countries and regions are actively carrying out data sovereignty strategic deployment and engaging in fierce competition in data resources, data technology, and data rules. This work adopts the policy text analysis method to study China’s data sovereignty policy, and employs the LDA model and policy instruments to quantitatively analyze the process evolution and thematic characteristics of China’s data sovereignty policy. Drawing on these findings, this study comprehensively considers the global data sovereignty policy and puts forward four policy recommendations: actively lead and participate in the formulation of international rules, optimize the data export security assessment process, improve the standard contract template for personal information export, and strengthen the legal protection of data security.

First page


Last Page





Bulletin of Chinese Academy of Sciences


1 洪永淼, 张明, 刘颖. 推动跨境数据安全有序流动引领数字经济全球化发展. 中国科学院院刊, 2022, 37(10):1418- 1425. Hong Y M, Zhang M, Liu Y. Promoting safe and orderly flow of cross-border data to lead development of globalization of digital economy. Bulletin of Chinese Academy of Sciences, 2022, 37(10):1418-1425. (in Chinese)

2 冉从敬, 刘妍. 数据主权的理论谱系. 武汉大学学报(哲学社会科学版), 2022, 75(6):19-29. Ran C J, Liu Y. Outline of data sovereignty genealogies. Wuhan University Journal (Philosophy & Social Science), 2022, 75(6):19-29. (in Chinese)

3 何波. 数据主权的发展、挑战与应对. 网络信息法学研究, 2019, (1):201-216. He B. The development, challenges, and countermeasures of data sovereignty. Journal of Cyber and Information Law, 2019, (1):201-216. (in Chinese)

4 Rainie S C, Schultz J L, Briggs E, et al. Data as a strategic resource:Self-determination, governance, and the data challenge for indigenous nations in the United States. International Indigenous Policy Journal, 2017, 8(2), doi:10.18584/iipj.2017.8.2.1.

5 Hippelainen L, Oliver I, Lal S. Towards dependably detecting geolocation of cloud servers//International Conference on Network and System Security. Cham:Springer, 2017:643-656.

6 孙南翔, 张晓君. 论数据主权——基于虚拟空间博弈与合作的考察. 太平洋学报, 2015, 23(2):63-71. Sun N X,Zhang X J. On data security-An examination of game and cooperation in cyberspace. Pacific Journal,2015, 23(2):63-71. (in Chinese)

7 齐爱民, 盘佳. 数据权、数据主权的确立与大数据保护的基本原则. 苏州大学学报(哲学社会科学版), 2015, 36(1):64-70. Qi A M, Pan J. Right to data, data sovereignty and the basic principle of big data protection. Journal of Soochow University (Philosophy & Social Science Edition), 2015, 36 (1):64-70. (in Chinese)

8 Jarke M, Otto B, Ram S. Data sovereignty and data space ecosystems. Business & Information Systems Engineering, 2019, 61(5):549-550.

9 Alboaie S, Cosovan D. Private data system enabling selfsovereign storage managed by executable choreographies//IFIP International Conference on Distributed Applications and Interoperable Systems. Cham:Springer, 2017:83-98.

10 冉从敬. 数据主权治理的全球态势与中国应对. 人民论坛, 2022, (4):24-27. Ran C J. Global situation of data sovereignty governance and China's response. People's Tribune, 2022, (4):24-27. (in Chinese)

11 郑琳, 李妍, 王延飞. 新时代国家数据主权战略研究. 情报理论与实践, 2022, 45(6):55-60. Zheng L, Li Y, Wang Y F. Research on national data sovereignty strategies in the new era. Information Studies (Theory & Application), 2022, 45(6):55-60. (in Chinese)

12 吕文晶, 陈劲, 刘进. 政策工具视角的中国人工智能产业政策量化分析. 科学学研究, 2019, 37(10):1765-1774. Lv W J, Chen J, Liu J. A quantitative analysis of China's Artificial Intelligence industry policy from the perspective of policy tools. Studies in Science of Science, 2019, 37(10):1765-1774. (in Chinese)

13 陈玲, 段尧清. 我国政府开放数据政策的实施现状和特点研究:基于政府公报文本的量化分析. 情报学报, 2020, 39 (7):698-709. Chen L, Duan Y Q. Analyzing implementation of the Chinese government open data policy using government bulletin text as example. Journal of the China Society for Scientific and Technical Information, 2020, 39(7):698-709. (in Chinese)

14 黄如花, 温芳芳. 我国政府数据开放共享的政策框架与内容:国家层面政策文本的内容分析. 图书情报工作, 2017, 61(20):12-25. Huang R H, Wen F F. Policy framework and content of opening and sharing government data in China:A content analysis of policy documents at the national level. Library and Information Service, 2017, 61(20):12-25. (in Chinese)

15 Rothwell R. Reindustrialization and technology:Towards a national policy framework. Science and Public Policy, 1985, 12(3):113-130.

16 黄萃, 徐磊, 钟笑天, 等. 基于政策工具的政策-技术路线图 (P-TRM)框架构建与实证分析——以中国风机制造业和光伏产业为例. 中国软科学, 2014, (5):76-84. Huang C, Xu L, Zhong X T, et al. A framework of integrated policy-technology roadmap (P-TRM) and its use:Examples of wind turbine and solar PV industries. China Soft Science, 2014, (5):76-84. (in Chinese)

17 付琳, 张东雨, 闫昊本, 等. 基于政策文本分析的中国碳减排政策工具研究. 科学学研究, 2023, 41(3):435-443. Fu L, Zhang D Y, Yan H B, et al. Research on China's policy instruments of carbon emission mitigation through policy content analysis method. Studies in Science of Science, 2023, 41(3):435-443. (in Chinese)

18 李霞, 陈琦, 贾宏曼. 中国智慧城市政策体系演化研究. 科研管理, 2022, 43(7):1-10. Li X, Chen Q, Jia H M. Research on evolution of the smart city policy system in China. Science Research Management, 2022, 43(7):1-10. (in Chinese)

19 时颖惠, 薛翔. 政策工具视角下我国信息安全政策研究——基于 81 份政策文本的量化分析. 现代情报, 2022, 42 (1):130-138. Shi Y H, Xue X. Research on information security policy in China from the perspective of policy tools-Based on the quantitative analysis of 81 policy texts. Journal of Modern Information, 2022, 42(1):130-138. (in Chinese)

20 张潮, 冷伏海. 机器学习辅助智能决策分析——以""绿色创新""问题为例. 科研管理, 2022, 43(9):32-40. Zhang C, Leng F H. An analysis of the machine-learningassisted intelligent decision-making-A study by taking ""green innovation"" as an example. Science Research Management, 2022, 43(9):32-40. (in Chinese)

21 Huang A H, Lehavy R, Zang A Y, et al. Analyst information discovery and interpretation roles:A topic modeling approach. Management Science, 2018, 64(6):2833-2855.