Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
low-altitude economy; low-altitude air route network; low-altitude infrastructure; airspace revenue
Document Type
Policy & Management Research
Abstract
Low-altitude airspace is a resource that needs to be fully explored, and the low-altitude economy is a new type of economic activity resulted from low-altitude airspace exploration and utilization. As the primary players of low-altitude flight activities, the commercialization and wide applications of unmanned aerial vehicles (UAVs) are promoting the prosperity of the low-altitude economy. A low-altitude air route network is an effective means to ensure the safe and efficient operations of a large number of UAVs, and it is also a new key infrastructure hosting low-altitude traffic. The history shows that the investment on public transport infrastructure as a policy tool to help economic growth has been widely used; similarly, investment on and construction of the low-altitude air route network infrastructure will yield significant social and economic benefits and foster a landscape rise of the low-altitude economy. Addressing the current issues of vague definitions and development paths in the low-altitude economy, this study attempts to propose a technical solution from the perspectives of geography science by constructing low-altitude air route network infrastructure and an airspace revenue mechanism to unlock the potential of the low-altitude economy.
First page
1966
Last Page
1981
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 廖小罕. 城市空中交通发展与路网基础设施建设. 中国空管, 2023, (5): 11-14. Liao X H. Urban air mobility development and infrastructure construction of road network. China Aviation Management, 2023, (5): 11-14. (in Chinese)
2 Bradford S. UAM ConOps v1.0. Washington, DC: FAA, 2020.
3 Gipson L. Advanced Air Mobility Mission. Washington, DC: NASA, 2022.
4 Choi J H, Park Y. Exploring economic feasibility for airport shuttle service of urban air mobility (UAM). Transportation Research Part A: Policy and Practice, 2022, 162: 267-281.
5 Garrow L A, German B J, Leonard C E. Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transportation Research Part C: Emerging Technologies, 2021, 132: 1-31.
6 Demsetz H. Some aspects of property rights. The Journal of Law and Economics, 1966, 9: 61-70.
7 Skorup B. Drone technology, airspace design, and aerial law in states and cities. Akron Law Review, 2022, 55(1): 4.
8 江昊. 低空空域权与空间权的冲突调和路径. 郑州航空工业管理学院学报(社会科学版), 2020, 39(3): 23-31. Jiang H. The conflict and harmony path between low attitude airspace right and space right. Journal of Zhengzhou University of Aeronautics (Social Science Edition), 2020, 39(3): 23-31. (in Chinese)
9 李晓津, 王志强, 邓戬. 空域资源经济价值研究与应用. 价格理论与实践, 2013, (12): 89-90.Li X J, Wang Z Q, Deng J. Research and application of economic value of airspace resources. Price: Theory & Practice, 2013, (12): 89-90. (in Chinese)
10 杜欣儒, 路紫, 郜方, 等. 灵活空域使用的设计方法与应用及其时间替代机制. 地球科学进展, 2016, 31(6): 643-649.Du X R, Lu Z, Gao F, et al. Design method, application and time alternative mechanism of flexible use of airspace. Advances in Earth Science, 2016, 31(6): 643-649. (in Chinese)
11 董雅晴, 路紫, 张一诺, 等. 航空流网络解构与空域资源动态配置研究——以京-成空中廊道为例. 地理与地理信息科学, 2022, 38(1): 116-123.Dong Y Q, Lu Z, Zhang Y N, et al. Deconstruction of air traffic flow network and dynamic allocation of airspace resources: A case study of Beijing-Chengdu corridor-in-the-sky. Geography and Geo-Information Science, 2022, 38(1): 116-123. (in Chinese)
12 Gao Q, Hu M H, Yang L, et al. GIS-based spatial patterns analysis of airspace resource availability in China. Aerospace, 2022, 9(12): 763.
13 Cho J W, Yoon Y J. How to assess the capacity of urban airspace: A topological approach using keep-in and keep-out geofence. Transportation Research Part C: Emerging Technologies, 2018, 92: 137-149.
14 廖小罕, 黄耀欢, 徐晨晨. 面向无人机应用的低空空域资源研究探讨. 地理学报, 2021, 76(11): 2607-2620. Liao X H, Huang Y H, Xu C C. Views on the study of low-altitude airspace resources for UAV applications. Acta Geographica Sinica, 2021, 76(11): 2607-2620. (in Chinese)
15 路紫, 李志勇, 张志娈, 等. 空域学概论. 北京: 高等教育出版社, 2016. Lu Z, Li Z Y, Zhang Q L, et al. Introduction to Airspace Studies. Beijing: Higher Education Press, 2016. (in Chinese)
16 卜鹏楼. 低空经济、通航产业: 辽宁发展新动力. 辽宁经济, 2013, (8): 9-15. Bu P L. Low-altitude economy and civil aviation industry: A new driving force for Liaoning development. Liaoning Economy, 2013, (8): 9-15. (in Chinese)
17 覃睿, 李卫民, 靳军号, 等. 基于资源观的低空及低空经济. 中国民航大学学报, 2011, 29(4): 56-60. Qin R, Li W M, Jing J H, et al. Low altitude economy based on resource-based view. Journal of Civil Aviation University of China, 2011, 29(4): 56-60. (in Chinese)
18 覃睿. 再论低空经济:概念定义与构成解析. 中国民航大学学报, 2023, 41(6): 59-64.Qin R. Further discussion on low altitude economy: Concept definition and composition analysis. Journal of Civil Aviation University of China, 2023, 41(6): 59-64. (in Chinese)
19 晏磊, 廖小罕, 周成虎, 等. 中国无人机遥感技术突破与产业发展综述. 地球信息科学学报, 2019, 21(4): 476-495.Yan L, Liao X H, Zhou C H, et al. The impact of UAV remote sensing technology on the industrial development of China: A review. Journal of Geo-Information Science, 2019, 21(4): 476-495. (in Chinese)
20 樊邦奎, 李云, 张瑞雨. 浅析低空智联网与无人机产业应用. 地理科学进展, 2021, 40(9): 1441-1450.Fan B K, Li Y, Zhang R Y. Initial analysis of low-altitude internet of intelligences (IOI) and the applications of unmanned aerial vehicle industry. Progress in Geography, 2021, 40(9): 1441-1450. (in Chinese)
21 段昌淼. 民用无人驾驶航空试验区发展概况. 无人机, 2022, (6): 36-39.Duan C M. Overview of the development of civil unmanned aerial vehicle test zones. Drone, 2022, (6): 36-39. (in Chinese)
22 廖小罕, 徐晨晨, 叶虎平, 等. 无人机应用发展关键基础设施与低空公共航路网规划. 中国科学院院刊, 2022, 37(7): 977-988.Liao X H, Xu C C, Ye H P, et al. Critical infrastructures for developing UAVs’ applications and low-altitude public air-route network planning. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 977-988. (in Chinese)
23 Deng T. Impacts of transport infrastructure on productivity and economic growth: Recent advances and research challenges. Transport Reviews, 2013, 33(6): 686-699.
24 林晓言, 陈有孝. 基础设施投资效果定量评价. 北京: 清华大学出版社, 北京交通大学出版社, 2005.Lin X Y, Chen Y X. Quantitative Evaluation of Infrastructure Investment Effectiveness. Beijing: Tsinghua University Press, Beijing Jiaotong University Press, 2005. (in Chinese)
25 Yu H T. A review of input-output models on multi-sectoral modelling of transportation-economic linkages. Transport Reviews, 2018, 38(5): 654-677.
26 中华人民共和国国家统计局. 2020年全国投入产出表. 北京: 中华人民共和国国家统计局, 2021.National Bureau of Statistics. 2020 National Input Output Table. Beijing: National Bureau of Statistics, 2021. (in Chinese)
27 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 4754-2017 国民经济行业分类. 北京: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration. GB/T 4754-2017 Industrial classification of national economic activities. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration, 2017. (in Chinese)
28 吴利学. 产业结构、生产率与经济增长. 产业经济评论, 2021, (6): 14-30.Wu L X. Industrial structure, productivity and economic growth. Review of Industrial Economics, 2021, (6): 14-30. (in Chinese)
29 魏熙晔, 郭东杰. 生产率提升对就业的影响——挤出效应还是溢出效应. 当代财经, 2022, (4): 15-27.Wei X Y, Guo D J. The impact of productivity growth on employment: crowding out effect or spillover effect. Contemporary Finance & Economics, 2022, (4): 15-27. (in Chinese)
30 Autor D, Salomons A. Robocalypse now—Does productivity growth threaten employment?// Investment and Growth in Advanced Economie. Sintra: European Central Bank Annual Conference, 2017.
31 Jang D S, Ippolitoy C, Sankararamanz S, et al. Concepts of airspace structures and system analysis for UAS traffic flows for urban areas// Information System. Texas: AIAA SciTech Forum, 2017.
32 SESAR Joint Undertaking. U-space CONOPS 4th Edition. Brussels: SESAR Joint Undertaking, 2022.
33 EUROCONTROL, EASA. UAS ATM Integration: Operational Concept. Cologne: EUROCONTROL, EASA, 2018.
34 EASA. Introduction of a Regulatory Framework for the Operation of Drones. Cologne: EASA, 2022.
35 Polishchuk V, Sunil E, de Vries V, et al. Metropolis 2 D4.1: Concept Design Report. Brussels: SESAR Joint Undertaking, 2021.
36 Salleh M F B M, Chi W C, Wang Z K, et al. UAS for Urban Environments and Other Topics. Florida: AIAA Information Systems-AIAA Infotech, 2018.
37 Balakrishnan K, Polastre J, Mooberry J, et al. The Roadmap for the Safe Integration of Autonomous Aircraft. California: Airbus, 2018.
38 廖小罕, 徐晨晨, 岳焕印. 基于地理信息的无人机低空公共航路规划研究. 无人机, 2018, (2): 45-49.Liao X H, Xu C C, Yue H Y. Research on UAV low-altitude public air route planning based on geographic information. UAV, 201, 8(2): 45-49. (in Chinese)
39 Xu C C, Liao X H, Yang F. IEEE standard pioneered an IT-led interdisciplinary approach to structure low-altitude airspace for UAV operations. Science China Information Sciences, 2022, 65(10): 207201.
40 Xu C C, Liao X H, Ye H P, et al. Iterative construction of low-altitude UAV air route network in urban areas: Case planning and assessment. Journal of Geographical Sciences, 2020, 30(9): 1534-1552.
41 IEEE Communication Society. IEEE 1939.1TM-2021 IEEE1939.1 standard for a framework for structuring low altitude airspace for UAV operation. Beijing: IEEE Communication Society, 2021.
42 Li S, Zhang H H, Yi J, et al. A bi-level planning approach of logistics unmanned aerial vehicle route network. Aerospace Science and Technology, 2023, 141: 108572.
43 Quan Q, Li M X, Fu R. Sky highway design for dense traffic. IFAC-Papers OnLine, 2021, 54(2): 140-145.
44 赵嶷飞, 郑雨欣. 城市物流无人机飞行任务剖面构建与优化. 飞行力学, 2021, 39(3): 54-59. Zhao Y F, Zheng Y X. Construction and optimization of flight mission profiles for urban logistics drones. Flight Dynamics, 2021, 39(3): 54-59. (in Chinese)
45 徐晨晨, 叶虎平, 岳焕印, 等. 城镇化区域无人机低空航路网迭代构建的理论体系与技术路径. 地理学报, 2020, 75(5): 917-930. Xu C C, Ye H P, Yue H Y, et al. Iterative construction of UAV low-altitude air route network in an urbanized region: Theoretical system and technical roadmap. Acta Geographica Sinica, 2020, 75(5): 917-930. (in Chinese)
46 FAA. AC 150/5390-2C: Heliport Design. Washington, DC: FAA, 2012.
47 EASA. Vertiports: Prototype Technical Specifications for the Design of VFR Vertiports for Operation with Manned VTOL-Capable Aircraft Certified in the Enhanced Category. Cologne: EASA, 2022.
48 NASA. High Density Vertiplex Subproject. Washington DC: NASA, 2022.
49 Gipson L. Building the Infrastructure for Advanced Air Mobility. Washington, DC: NASA, 2022.
50 Tan J M, Ye H P, Xu C C, et al. SkyroadAR: An augmented reality system for UAVs’ low-altitude public air route visualization. Drones, 2023, 7(9): 587.
51 Rule T A. Airspace in an age of drones. Boston University Law Review, 2014, 95: 155-208.
52 U.S. Government Publishing Office. Keeping pace with innovation—Update on the safe integration of unmanned aircraft system into the airspace. Washington DC: U.S. Government Publishing Office, 2018.
53 中国民航局发展计划司. 民航空管收费行为规则. 北京: 中国民航局发展计划司, 2024. Development Planning Department of Civil Aviation Administration of China. Rules on Air Traffic Management Charges in Civil Aviation. Beijing: Development Planning Department of Civil Aviation Administration of China, 2024. (in Chinese)
Recommended Citation
LIAO, Xiaohan; XU, Chenchen; and YE, Huping
(2024)
"Benefits and challenges of constructing low-altitude air route network infrastructure for developing low-altitude economy,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 39
:
Iss.
11
, Article 15.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20240614002
Available at:
https://bulletinofcas.researchcommons.org/journal/vol39/iss11/15
Included in
Data Science Commons, Growth and Development Commons, Multi-Vehicle Systems and Air Traffic Control Commons, Science and Technology Policy Commons