Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
national needs, strategic orientation, disciplinary development, innovations in science and technology
Document Type
Science Portrait
Abstract
This study summarizes the development path of the Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), including the developmental trajectories of disciplines and the institutional reform at specific historical opportunities. It also overviews the CEMPS’s strategic orientation (setting sights on the global frontiers of science and technology and the major needs of the country), the scientific achievements, and the core spirits of scientists, thus to provide references to the reform, innovation, and development of scientific research institutions in relevant fields.
First page
1792
Last Page
1807
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 李睿晶, 房超, 岳昆. 国家重点实验室建设40年历程回顾与展望. 科技中国, 2022, (12): 17-20.Li R J, Fang C, Yue K. Retrospect and prospect of the 40-year construction of state key laboratory. Scitech in China, 2022, (12): 17-20. (in Chinese)
2 Gao Y Q, Huang J Q, Reyt G, et al. A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier. Science, 2023, 382: 464-471.
3 Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324.
4 Chen J H, Chen S T, He N Y, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nature Plants, 2020, 6(5): 570-580.
5 Wu X X, Mu W H, Li F, et al. Cryo-EM structures of the plant plastid-encoded RNA polymerase. Cell, 2024, 187(5): 1127-1144.
6 Jiang Y N, Wang W X, Xie Q J, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356: 1172-1175.
7 Shi J C, Zhao B Y, Zheng S, et al. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell, 2021, 184(22): 5527-5540.
8 Dong W T, Zhu Y Y, Chang H Z, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature, 2021, 589:586-590.
9 Jiang S Y, Jardinaud M F, Gao J P, et al. NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science, 2021, 374: 625-628.
10 薛红卫, 白书农. 许智宏——中国植物科学和高等教育发展的践行者和引领者. 中国细胞生物学学报, 2020, 42(3): 541-548.Xue H W, Bai S N. Xu Zhihong—Practitioner and leader of the development of plant science and higher education in China. Chinese Journal of Cell Biology, 2020, 42(3): 541-548. (in Chinese)
11 Zhou C M, Zhang T Q, Wang X, et al. Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science, 2013, 340: 1097-1100.
12 Tao Z, Shen L S, Gu X F, et al. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature, 2017, 551: 124-128.
13 Zhai D, Zhang L Y, Li L Z, et al. Reciprocal conversion between annual and polycarpic perennial flowering behavior in the Brassicaceae. Cell, 2024, 187(13): 3319-3337.
14 Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146.
15 Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39 (5): 623-630.
16 Jin J, Huang W, Gao J P, et al. Genetic control of rice plant architecture under domestication. Nature Genetics, 2008, 40(11): 1365-1369.
17 Zhang H, Zhou J F, Kan Y, et al. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376: 1293-1300.
18 杨淑华, 钱前, 左建儒, 等. 2022年中国植物科学重要研究进展. 植物学报, 2023, 58(2): 175-188.Yang S H, Qian Q, Zuo J R, et al. Achievements and advances of plant sciences research in China in 2022. Chinese Bulletin of Botany, 2023, 58(2): 175-188. (in Chinese)
19 Feng Q, Zhang Y J, Hao P, et al. Sequence and analysis of rice chromosome 4. Nature, 2002, 420: 316-320.
20 Huang X H, Wei X H, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967.
21 Huang X H, Zhao Y, Wei X H, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2012, 44(1): 32-39.
22 Huang X H, Kurata N, Wei X H, et al. A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012, 490: 497-501.
23 Huang X H, Yang S H, Gong J Y, et al. Genomic architecture of heterosis for yield traits in rice. Nature, 2016, 537: 629-633.
24 Zhao Q, Feng Q, Lu H Y, et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics, 2018, 50(2): 278-284.
25 Huang Y C, Wang H H, Zhu Y D, et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature, 2022, 612: 292-300.
26 Mao Y B, Cai W J, Wang J W, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 2007, 25(11): 1307-1313.
27 Bai Y C, Yang C Q, Halitschke R, et al. Natural history-guided omics reveals plant defensive chemistry against leafhopper pests. Science, 2022, 375: eabm2948.
28 Deng Y W, Zhai K R, Xie Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355: 962-965.
29 Gao M J, He Y, Yin X, et al. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 2021, 184(21): 5391-5404.
30 Wang G, Chen X, Yu C Z, et al. Release of a ubiquitin brake activates OsCERK1-triggered immunity in rice. Nature, 2024, 629: 1158-1164.
31 Zhai K R, Liang D, Li H L, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature, 2022, 601:245-251.
32 Yuan M H, Jiang Z Y, Bi G Z, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592: 105-109.
33 Chen T, Nomura K, Wang X L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature, 2020, 580: 653-657.
34 Medina-Puche L, Tan H, Dogra V, et al. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. Cell, 2020, 182(5):1109-1124.
35 Wang G D, Vega-Rodríguez J, Diabate A, et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science, 2021, 371: 411-415.
36 Wang S B, Dos-Santos A L A, Huang W, et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science, 2017, 357: 1399-1402.
37 Zhan S, Zhang W, Niitepõld K, et al. The genetics of monarch butterfly migration and warning colouration. Nature, 2014, 514: 317-321.
38 Ren S X, Fu G, Jiang X G, et al. Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature, 2003, 422: 888-893.
39 He J F, Peng G W, Min J, et al. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science, 2004, 303: 1666-1669.
40 Wang Q J, Zhang Y K, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010, 327: 1004-1007.
41 Huang K, Wu X X, Fang C L, et al. Pol IV and RDR2: A two-RNA-polymerase machine that produces double-stranded RNA. Science, 2021, 374: 1579-1586.
42 Bharati B K, Gowder M, et al. Crucial role and mechanism of transcription-coupled DNA repair in bacteria. Nature, 2022, 604: 152-159.
43 You L L, Omollo E O, Yu C Z, et al. Structural basis for intrinsic transcription termination. Nature, 2023, 613: 783-789.
44 Zeng Y, Zhang H W, Wu X X, et al. Structural basis of exoribonuclease-mediated mRNA transcription termination. Nature, 2024, 628: 887-893.
45 Shao Y Y, Lu N, Wu Z F, et al. Creating a functional single-chromosome yeast. Nature, 2018, 560: 331-335.
46 许琦敏. 建设一流科研机构,筑牢创新根基和底座. 文汇报, 2024-06-29(06). Xu Q M. Build premier research institutions, fortify foundations for innovation. Wenhui Daily, 2024-06-29(06). (in Chinese)
47 施晓光. 探究“卡脖子”的破解之道——试论基础研究的价值及其实现方式. 北京教育(高教), 2023, (10): 4-11.Shi X G. Breaking ways on exploding “core technologies plight”—To discuss values and achieving ways of basic research and its realization methods. Beijing Education (Higher Education), 2023, (10): 4-11. (in Chinese)
Recommended Citation
ZHANG, Yu; YANG, Zhengxing; JU, Hong; and HAN, Bin
(2024)
"Basic research: Understanding leads to innovation—Exploring path of development of Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 39
:
Iss.
10
, Article 13.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20240930003
Available at:
https://bulletinofcas.researchcommons.org/journal/vol39/iss10/13
Included in
History of Science, Technology, and Medicine Commons, Science and Technology Policy Commons