Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
food security, smart agriculture, big data in agricultural, Nine-Step Approach
Document Type
S&T and Society
Abstract
Food security is a top priority in national governance. Since 1949, high-standard farmland construction, agricultural mechanization development, and agricultural technology promotion have all contributed to the grain production. To ensure grain security, China has drawn a “red line” of 1.8 billion mu (about 120 million hectares) as the official minimum of arable land. At the same time, increasing the investment of capital goods such as fertilizer and pesticides can no longer produce more food. Due to the extensive farming method in the past, the continuous increase in total grain output becomes difficult in the future. With the rapid development of advanced technologies such as informatization, intelligence, Internet of Things, big data and artificial intelligence, fine management of agricultural production can be achieved. Through the integration of digital economy and traditional agricultural industries, developing smart agriculture will provide possibilities for increasing food production. Focusing on the three stages of grain production (including pre-, during- and after-production), this study puts forward the Nine-Step Approach of smart agriculture, namely two refinements, three changes, three reductions, and one use. For each step, the connotation, the existing technical bottleneck, and the potential of future improvement are discussed. In addition, suggestions for further development of smart agriculture are made from four perspectives, namely, data collection, data standardization, data applications, and data security.
First page
198
Last Page
209
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 中国信息通信研究院. 中国数字经济发展报告(2022年). 北京: 中国信息通信研究院, 2022.China Academy of Information and Communications Technology. Report on the Development of China’s Digital Economy (2022). Beijing: China Academy of Information and Communications Technology, 2022. (in Chinese)
2 FAO, IFAD, UNICEF, et al. The State of Food Security and Nutrition in the World 2023—Urbanization, Agrifood Systems Transformation and Healthy Diets across the Rural-Urban Continuum. Rome: FAO, 2023.
3 国家统计局农村社会经济调查司. 2022年中国农村统计年鉴. 北京: 中国统计出版社, 2022.Department of Rural Surveys, National Bureau of Statistics. China Rural Statistical Yearbook 2022. Beijing: China Statistics Press, 2022. (in Chinese)
4 Rizzo G, Monzon J P, Tenorio F A, et al. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. PNAS, 2022, 119(4): 1-6.
5 赵春江. 智慧农业发展现状及战略目标研究. 智慧农业, 2019, 1(1): 1-7. Zhao C J. State-of-the-art and recommended developmental strategic objectives of smart agriculture. Smart Agriculture, 2019, 1(1): 1-7. (in Chinese)
6 赵春江. 智慧农业的发展现状与未来展望. 中国农业文摘—农业工程, 2021, 33(6): 4-8. Zhao C J. Current situations and prospects of smart agriculture. Agricultural Science and Engineering in China. 2021, 33(6): 4-8. (in Chinese)
7 罗锡文, 廖娟, 胡炼, 等. 提高农业机械化水平促进农业可持续发展. 农业工程学报, 2016, 32(1): 1-11. Luo X W, Liao J, Hu L, et al. Improving agricultural mechanization level to promote agricultural sustainable development. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 1-11. (in Chinese)
8 Huang Y B, Zhang Q. Agricultural Cybernetics. Berlin: Springer, 2021.
9 Jat M L, Chandna P, Gupta R, et al. Laser Land Leveling: A Precursor Technology for Resource Conservation// Rice-Wheat Consortium Technical Bulletin Series 7. New Delhi: Rice-Wheat Consortium for the Indo-Gangetic Plains, 2006.
10 Naresh R K, Singh S P, Misra A K, et al. Evaluation of the laser leveled land leveling technology on crop yield and water use productivity in Western Uttar Pradesh. African Journal of Agricultural Research, 2014, 9(4): 473-478.
11 苑严伟, 张小超, 吴才聪, 等. 玉米免耕播种施肥机精准作业监控系统. 农业工程学报, 2011, 27(8): 222-226. Yuan Y W, Zhang X C, Wu C C, et al. Precision control system of no-tillage corn planter. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 222-226. (in Chinese)
12 中华人民共和国水利部. 2022年中国水资源公报. 北京: 中华人民共和国水利部, 2023.Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin 2022. Beijing: Ministry of Water Resources of the People’s Republic of China, 2023. (in Chinese)
13 赵伟霞, 李久生, 栗岩峰. 大型喷灌机变量灌溉技术研究进展. 农业工程学报, 2016, 32(13): 1-7. Zhao W X, Li J S, Li Y F. Review on variable rate irrigation with continuously moving sprinkler machines. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 1-7. (in Chinese)
14 Hedley C B, Bradbury S, Ekanayake J. Spatial irrigation scheduling for variable rate irrigation. Proceedings of the New Zealand Grassland Association, 2010, 72: 97-102.
15 Blonquist J M, Jones S B, Robinson D A. Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor. Agricultural Water Management, 2006, 84: 153-165.
16 李圳鹏, 梁春英, 李普, 等. 精准施肥技术研究现状和展望. 热带农业工程, 2022, 46(3): 47-50.Li Z P, Liang C Y, Li P, et al. Research status and outlook of precision fertilization technology. Tropical Agricultural Engineering, 2022, 46(3): 47-50. (in Chinese)
17 于合龙, 陈桂芬, 赵兰坡, 等. 吉林省黑土区玉米精准施肥技术研究与应用. 吉林农业大学学报, 2008, 30(5): 753-759.Yu H L, Chen G F, Zhao L P, et al. Study and application of maize precision fertilization technology in Black Soil of Jilin Province. Journal of Jilin Agricultural University, 2008, 30(5): 753-759. (in Chinese)
18 段立蹄, 刘洋洋, 茹煜. 植保无人机变量施药监测技术研究发展与展望. 中国农机化学报, 2018, 39(6): 108-113.Duan L T, Liu Y Y, Ru Y. Research development and prospect of plant protection UAV aerial application monitoring technology. Journal of Chinese Agricultural Mechanization, 2018, 39(6): 108-113. (in Chinese)
19 FAO. The State of Food and Agriculture 2019—Moving forward on Food Loss and Waste Reduction. Rome: FAO, 2019.
20 高利伟, 许世卫, 李哲敏, 等. 中国主要粮食作物产后损失特征及减损潜力研究. 农业工程学报, 2016, 32(23): 1-11.Gao L W, Xu S W, Li Z M, et al. Main grain crop postharvest losses and its reducing potential in China. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 1-11. (in Chinese)
21 王超, 王韵弘, 赵天爱. 2022年粮食作物机械化进展情况. 农机科技推广, 2023, (1): 9-13. Wang C, Wang Y H, Zhao T A. Progress in mechanization of food crops in 2022. Agriculture Machinery Technology Extension, 2023, (1): 9-13. (in Chinese)
22 马权. 玉米机械化收获作业操作规程及粮食减损技术. 农机使用与维修, 2023, (3): 99-101.Ma Q. Operating procedures for mechanized harvesting of corn and the technology of reducing corn loss. Agricultural Machinery Using & Maintenance, 2023, (3): 99-101. (in Chinese)
23 魏祖国, 尹国彬, 邸坤. 我国粮食物流运输损失评估及减损对策. 粮油仓储科技通讯, 2016, 32(2): 55-56.Wei Z G, Yin G B, Di K. Evaluation of loss of grain logistics transportation in China and countermeasures of loss reduction. Grain and Oil Storage Technology, 2016, 32(2): 55-56. (in Chinese)
24 杨传文, 邢帆, 朱建春, 等. 中国秸秆资源的时空分布、利用现状与碳减排潜力. 环境科学, 2023, 44(2): 1149-1162. Yang C W, Xing F, Zhu J C, et al. Temporal and spatial distribution, utilization status, and carbon emission reduction potential of straw resources in China. Environmental Science, 2023, 44(2): 1149-1162. (in Chinese)
25 吕开宇, 仇焕广, 白军飞, 等. 中国玉米秸秆直接还田的现状与发展. 中国人口·资源与环境, 2013, 23(3):171-176.Lv K Y, Qiu H G, Bai J F, et al. Development of direct return of corn stalk to soil: Current status, driving forces and constraints. China Population, Resources and Environment, 2013, 23(3): 171-176. (in Chinese)
26 孙凝晖, 张玉成, 石晶林. 构建我国第三代农机的创新体系. 中国科学院院刊, 2020, 35(2): 154-165.Sun N H, Zhang Y C, Shi J L. Build innovation system of third generation of agricultural machinery in China. Bulletin of Chinese Academy of Sciences, 2020, 35(2): 154-165. (in Chinese)
27 姚艳敏, 白玉琪. 农业大数据标准体系框架研究. 农业大数据学报, 2019, 1(4): 76-85.Yao Y M, Bai Y Q. A framework for agricultural big data standards. Journal of Agricultural Big Data, 2019, 1(4): 76-85. (in Chinese)
28 孙凝晖, 张玉成, 王竑晟, 等. 农业模拟器:用智能技术打通黑土地保护的数据流. 中国科学院院刊, 2021, 36(10): 1165-1174.Sun N H, Zhang Y C, Wang H S, et al. Agricultural simulator: Using intelligent technology to get data flow for black land protection. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1165-1174. (in Chinese)
29 赵丽丽, 杨多贵. 粮食战争:美国霸权世界的秘密武器. 科技促进发展, 2010, 11: 24-29. Zhao L L, Yang D G. The grain war: The secret weapon of U.S. hegemony. Science & Technology for Development, 2010, 11: 24-29. (in Chinese)
Recommended Citation
GAO, Shuqin; HU, Zhaomin; WANG, Hongsheng; ZHANG, Xiaobo; and ZHANG, Yucheng
(2024)
"Nine-Step Approach of smart agricultural helps grain production reduce costs, increase yield and efficiency,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 39
:
Iss.
1
, Article 22.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20230811003
Available at:
https://bulletinofcas.researchcommons.org/journal/vol39/iss1/22
Included in
Agricultural Science Commons, Agronomy and Crop Sciences Commons, Science and Technology Policy Commons