Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
multi-source heterogeneous, wuli-shili-renli (WSR), data fusion, big data
Document Type
S & T and Society
Abstract
In the era of multi-source heterogeneous big data, big data presents new features such as cross, diversity and variability. The applications of big data in a wider range of fields have new requirements for data fusion. Under this background, the connotation of data fusion is enriched and expanded. The generalized data fusion includes the fusion of data resources, the fusion of model methods, and the fusion of decision-makers' knowledge and experience. This study analyzes the characteristics of multi-source heterogeneous data fusion at three different fusion levels: data level, information level and decision level, and discusses challenges for data fusion in storage, application and analysis technology, data management as well as value determination. What's more, corresponding suggestions are putted forward, which benefit for enterprises, government and other entities to effectively manage data resources and provide reference for more in-depth data fusion analysis.
First page
1225
Last Page
1233
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 孟小峰, 杜治娟. 大数据融合研究:问题与挑战. 计算机研究与发展, 2016, 53(2): 231-246.Meng X F, Du Z J. Research on the big data fusion: Issues and challenges. Journal of Computer Research and Development, 2016, 53(2): 231-246. (in Chinese)
2 陈科文, 张祖平, 龙军. 多源信息融合关键问题、研究进展与新动向. 计算机科学, 2013, 40(8): 6-13. Chen K W, Zhang Z P, Long J. Multisource information fusion: Key issues, research progress and new trends. Computer Science, 2013, 40(8): 6-13. (in Chinese)
3 彭冬亮, 文成林, 薛安克. 多传感器多源信息融合理论及应用. 北京: 科学出版社, 2010. Peng D L, Weng C L, Xue A K. Theory and application of multi-sensor and multi-source information fusion. Beijing: Science Press, 2010. (in Chinese)
4 White J F E. A model for data fusion// Proceedings of the First National Symposium on Sensor Fusion. 1988, 2: 149-158.
5 Bedworth M, O’Brien J. The Omnibus model: A new model of data fusion?. IEEE Aerospace and Electronic Systems Magazine, 2000, 15(4): 30-36.
6 Blasch E, Breton R, Valin P, et al. User information fusion decision making analysis with the C-OODA model// 14th International Conference on Information Fusion. Chicago: IEEE, 2011: 1-8.
7 Shahbazian E, Blodgett D, Labbé P. The extended OODA model for data fusion systems// Proceedings of 2001 International Conference on Information Fusion. Montreal: International Conference on Information Fusion, 2001: 106-112.
8 Liggins M E, Hall D L, Llinas J. Handbook of Multisensor Data Fusion: Theory and Practice (Second Edition). New York: CRC Press, 2008.
9 Kuznetsova P, Ordonez V, Berg T L, et al. TreeTalk: Composition and compression of trees for image descriptions. Transactions of the Association for Computational Linguistics, 2014, 2: 351-362.
10 Rövid A, Remeli V. Towards raw sensor fusion in 3D object detection// 2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI). Herlany: IEEE, 2019: 293-298.
11 Lathuilière S, Massé B, Mesejo P, et al. Deep reinforcement learning for audio-visual gaze control// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2019: 1555-1562.
12 Liang X C, Hu P Y, Zhang L G, et al. MCFNet: Multi-layer concatenation fusion network for medical images fusion. IEEE Sensors Journal, 2019, 19(16): 7107-7119.
13 Laghmara H, Laurain T, Cudel C, et al. Heterogeneous sensor data fusion for multiple object association using belief functions. Information Fusion, 2020, 57: 44-58.
14 李爱华, 续维佳, 石勇. 基于数据融合的商务智能与分析架构研究. 计算机科学, 2022, 49(12): 185-194. Li A H, Xu W J, Shi Y. Framework of business intelligence and analysis based on data fusion. Computer Science, 2022, 49(12): 185-194. (in Chinese)
15 Gu J F, Zhu Z C. Knowing Wuli, sensing Shili, caring for Renli: Methodology of the WSR approach. Systemic Practice and Action Research, 2000, 13(1): 11-20.
16 朱志昌. 物理事理人理方法论国际交流的启示// 中国系统工程学会第十一届学术年会论文集. 宜昌: 中国系统工程学会, 2000: 149-164. Zhu S C. The WSR approach in the international systems community// Proceeding of 11th Annual Conference of Systems Engineering Society of China. Yichang: Systems Engineering Society of China, 2000:149-164.(in Chinese)
17 顾基发, 唐锡晋. 从古代系统思想到现代东方系统方法论. 系统工程理论与实践, 2000, (1): 90-93.Gu J F, Tang X J. From ancient system thoughts to modern oriental systems methodology. Systems Engineering - Theory & Practice, 2000, (1): 90-93. (in Chinese)
18 Li A H, Xu W J, Shi Y. A new data fusion framework of business intelligence and analytics in economy, finance and management// 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). New York: IEEE, 2020: 940-945.
19 彭怡, 寇纲. 基于领域知识的数据挖掘理论框架研究// 第三届(2008)中国管理学年会——信息管理分会场论文集. 长沙: 中国管理现代化研究会, 2008: 43-51.Peng Y, Kou G. Research on data mining theory framework based on domain knowledge// The 3rd (2018) Chinese Academy Of Management Annual Conference- Collected Papers of Information Management Branch. Changsha: Chinese Academy of Management, 2008: 43-51. (in Chinese)"
Recommended Citation
LI, Aihua; XU, Weijia; and SHI, Yong
(2023)
"Research on multi-source heterogeneous big data fusion based on WSR,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 38
:
Iss.
8
, Article 12.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20220921003
Available at:
https://bulletinofcas.researchcommons.org/journal/vol38/iss8/12
Included in
Databases and Information Systems Commons, Data Science Commons, Data Storage Systems Commons, Science and Technology Policy Commons