Bulletin of Chinese Academy of Sciences (Chinese Version)


tall wheatgrass, saline and alkaline land, Coastal Grass Belt, food security, forage security

Document Type

S & T and Society


Tall wheatgrass (Elytrigia elongata) is a perennial cool-season bunchgrass with high productivity and tolerance to salt and alkali, waterlogging, and drought. Since first introduced into China in 1950s, tall wheatgrass has long been used as a wild parent for distant hybridization with wheat (Triticum aestivum). During 1980s─1990s, a few tall wheatgrass varieties were introduced to China as forage grass, nonetheless, currently they are still not widely cultivated and no variety was certificated. In 2020, Zhensheng Li put forward a proposal to construct “Coastal Grass Belt” on saline and alkaline soils in the Circum-Bohai sea region, which provides an opportunity for the industrialization of tall wheatgrass in China. This paper introduces the background, main characteristics, history and status of tall wheatgrass and put forward suggestions for industrialization of tall wheatgrass in China. In order to promote utilization of tall wheatgrass in China, the authors suggested constructing demonstration models of “Coastal Grass Belt” and demonstration farms for livestock in the “Coastal Grass Belt” targeted area. Leading companies should be fostered to form a complete industrial chain of “leading companies + professional cooperatives/ large growers”. In addition, basic research, breeding, and seed industrialization should be carried out and accelerated. Meantime, policy and funds from government’s support should also be considered. “Coastal Grass Belt” can not only solve the shortage of high-quality forage grass in China, but also establish ecological barrier and protect the ecological environment.

First page


Last Page





Bulletin of Chinese Academy of Sciences


1 任继周,李发弟,曹建民,等.我国牛羊肉产业的发展现状、挑战与出路.中国工程科学, 2019, 21(5):67-73.

Ren J Z, Li F D, Cao J M, et al. Development status, challenges, and solutions of China's beef and mutton industry. Strategic Study of Chinese Academy of Engineering, 2019, 21(5):67-73.(in Chinese)

2 高树琴,王竑晟,段瑞,等.关于加大在中低产田发展草牧业的思考.中国科学院院刊, 2020, 35(2):166-174.

Gao S Q, Wang H S, Duan R, et al. How to develop grassbased livestock husbandry in areas of low-and middle-yield fields. Bulletin of Chinese Academy of Sciences, 2020, 35(2):166-174.(in Chinese)

3 胥伟华,王建林,刘小京,等.建设""滨海草带""的科技缘由、内容与对策.中国科学院院刊, 2022, 37(2):238-245.

Xu W H, Wang J L, Liu X J, et al. Scientific and technological reasons, contents and corresponding policies of constructing ""Coastal Grass Belt"". Bulletin of Chinese Academy of Sciences, 2022, 37(2):238-245.(in Chinese)

4 高菲,王铁梅,卢欣石. 2021年我国商品饲草生产形势分析与2022年趋势展望.畜牧产业, 2022,(3):32-37.

Gao F, Wang T M, Lu X S. Analysis of commercial forage production situation in 2021 and trend outlook in 2022.

Animal Agriculture, 2022,(3):32-37.(in Chinese)

5 李宏伟,郑琪,李滨,等.一种耐盐碱牧草——长穗偃麦草研究进展.草业学报, 2022, 31(5):190-199.

Li H W, Zheng Q, Li B, et al. Progress in research on tall wheatgrass as a salt-alkali tolerant forage grass. Acta Prataculturae Sinica, 2022, 31(5):190-199.(in Chinese)

6 王甜甜,曹丽雯,刘智全,等.黄河三角洲滨海草带建设的饲草基础生物学问题.植物学报, 2022, 57(6):837-847.

Wang T T, Cao L W, Liu Z Q, et al. Basic biology of forage grass for constructing Coastal Grass Belt in Yellow River Delta. Chinese Bulletin of Botany, 2022, 57(6):837-847.(in Chinese)

7 曹晓风,孙波,陈化榜,等.我国边际土地产能扩增和生态效益提升的途径与研究进展.中国科学院院刊, 2021, 36(3):336-348.

Cao X F, Sun B, Chen H B, et al. Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China. Bulletin of Chinese Academy of Sciences, 2021, 36(3):336-348.(in Chinese)

8 侯瑞星,欧阳竹,刘振,等.环渤海""滨海草带""建设与生态草牧业发展路径.中国科学院院刊, 2021, 36(6):652-659.

Hou R X, Ouyang Z, Liu Z, et al. ""Coastal Grass Belt"" as paradigm for grass-based livestock husbandry around Bohai Bay. Bulletin of Chinese Academy of Sciences, 2021, 36(6):652-659.(in Chinese)

9 李宏伟,郑琪,李滨,等.长穗偃麦草分子育种基础研究进展.植物学报, 2022, 57(6):792-801.

Li H W, Zheng Q, Li B, et al. Research progress on the aspects of molecular breeding of tall wheatgrass. Chinese Bulletin of Botany, 2022, 57(6):792-801.(in Chinese)

10 南志标,王彦荣,贺金生,等.我国草种业的成就、挑战与展望.草业学报, 2022, 31(6):1-10.

Nan Z B, Wang Y R, He J S, et al. Achievements, challenges and prospects of herbage seeds industry in China. Acta Prataculturae Sinica, 2022, 31(6):1-10.(in Chinese)

11 谷安琳.耐盐碱栽培牧草——长穗薄冰草.中国草地学报, 2004, 26(2):9.

Gu A L. Cultivation of salt-tolerant forage grass-Thinopyrum ponticum. Chinese Journal of Grassland, 2004, 26(2):9.(in Chinese)

12 赵树慧.高产优质耐盐牧草——高冰草.草原与草坪1994,(3):20-22.

Zhao S H. High yield and high quality salt-tolerant forage grass-Tall wheatgrass. Grassland and Turf, 1994,(3):20-22.(in Chinese)

13 Dewey D R. Salt tolerance of twenty-five strains of Agropyron. Agronomy Journal, 1960, 52(11):631-635.

14 Rogers A L, Bailey E T. Salt tolerance trials with forage plants in south western Australia. Australian Journal of Experimental Agriculture and Animal Husbandry, 1963, 3(9):125-130.

15 Mcguire G E, Dvôrák J. High salt tolerance potential in wheatgrasses. Crop Science, 1981, 21(5):702-705.

16 Shannon M C. Testing salt tolerance variability among tall wheatgrass lines. Agronomy Journal, 1978, 70(5):719-722.

17 沈禹颖,李昀,阎顺国,等.河西走廊五种禾本科牧草早期耐盐性研究.草地学报, 1999, 7(4):293-299.

Shen Y L, Li Y, Yan S G, et al. Salt tolerance of early growth of five grass species in Hexi corridor. Acta Agrestia Sinica, 1999, 7(4):293-299.(in Chinese)

18 Temel S, Keskin B, Simsek U, et al. Performance of some forage grass species in halomorphic soil. Turkish Journal of Field Crops, 2015, 20(2):131-141.

19 彭运翔,张力君,于颖杰,等.偃麦草属植物种子和幼苗的耐盐性.内蒙古草业, 2002, 14(3):42-43.

Peng Y X, Zhang L J, Yu Y J, et al. Salt tolerance of seeds and seedlings of Elytrigia. Inner Mongolia Prataculture, 2002, 14(3):42-43.(in Chinese)

20 Li H W, Li W, Zheng Q, et al. Salinity threshold of tall wheatgrass for cultivation in coastal saline and alkaline land. Agriculture, 2023, 13(2):337.

21 Csete S, Stranczinger S, Szalontai B, et al. Tall wheatgrass cultivar Szarvasi-1(Elymus elongatus subsp. ponticus cv. Szarvasi-1) as a potential energy crop for semi-arid lands of Eastern Europe//Nayeripour M, Kheshti M, eds. Sustainable Growth and Applications in Renewable Energy Sources. Landon:IntechOpen, 2011:269-294.

22 Falasca S L, Miranda C, Alvarez S P. Agro-ecological zoning for tall wheatgrass (Thinopyrum Ponticum) as a potential energy and forage crop in salt-affected and dry lands of Argentina. Archives of Crop Science, 2017, 1(1):10-19.

23 Bennett S J, Barrett-Lennard E G, Colmer T D. Salinity and waterlogging as constraints to saltland pasture production:A review. Agriculture, Ecosystems&Environment, 2009, 129(4):349-360.

24 Taeb M, Koebner R M, Forster B P. Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome, 1993, 36(5):825-830.

25 Iturralde E M, Berone G D, Striker G G, et al. Anatomical, morphological and growth responses of Thinopyrum ponticum plants subjected to partial and complete submergence during early stages of development. Functional Plant Biology, 2020, 47(8):757-768.

26 Vergiev S. Tall Wheatgrass (Thinopyrum ponticum):Flood resilience, growth response to sea water immersion, and its capacity for erosion and flooding control of coastal areas. Environments, 2019, 6(9):103.

27 García M G, Busso C A, Polci P, et al. Water relations and leaf growth rate of three Agropyron genotypes under water stress. Biocell, 2002, 26(3):309-317.

28 Borrajo C I, Sánchez-moreiras A M, Reigosa M J. Morphophysiological responses of tall wheatgrass populations to different levels of water stress. PLoS One, 2018, 13:e0209281.

29 张睿,封晓辉,吴玉洁,等.长穗偃麦草(Thinopyrum ponticum)幼苗对盐旱胁迫的生理响应.中国生态农业学报, 2022, 30(11):1795-1806.

Zhang R, Feng X H, Wu Y J, et al. Interactive effects of drought and salt stresses on the growth and physiological characteristics of Thinopyrum ponticum. Chinese Journal of Eco-Agriculture, 2022, 30(11):1795-1806.(in Chinese)

30 Bahrani M J, Bahrami H A, Haghighi A A. Effect of water stress on ten forage grasses native or introduced to Iran. Grassland Science, 2010, 56(1):1-5.

31 Porensky L M, Davison J, Leger E A, et al. Grasses for biofuels:A low water-use alternative for cold desert agriculture?. Biomass and Bioenergy, 2014, 66:133-142.

32 Nazli R I, Kusvuran A, Tansi V, et al. Comparison of cool and warm season perennial grasses for biomass yield, quality, and energy balance in two contrasting semiarid environments. Biomass and Bioenergy, 2020, 139:105627.

33 Dickeduisbeg M, Laser H, Tonn B, et al. Tall wheatgrass (Agropyron elongatum) for biogas production:Crop management more important for biomass and methane yield than grass provenance. Industrial Crops and Products, 2017, 97:653-663.

34 Jensen K B, Pearse G, Larson S R, et al.'AlkarXL', a new tall wheatgrass cultivar for use on saline semiarid lands. Journal of Plant Registrations, 2020, 14(3):298-305.

35 Ruf T, Emmerling C. Site-adapted production of bioenergy feedstocks on poorly drained cropland through the cultivation of perennial crops. A feasibility study on biomass yield and biochemical methane potential. Biomass and Bioenergy, 2018, 119:429-435.

36 Phillips W A, Northup B N, Venuto B C. Dry matter intake and digestion of perennial and annual cool-season grasses by sheep. The Professional Animal Scientist, 2009, 25(5):610-618.

37 Ricci P, Romera A, Burges J C, et al. Case study:Precision and accuracy of methodologies for estimating in vitro digestibility of Thinopyrum ponticum (tall wheatgrass) hay and haylage fed to beef cattle. The Professional Animal Scientist, 2009, 25(5):625-632.

38 Vogel K P, Moore K J. Forage yield and quality of tall wheatgrass accessions in the USDA germplasm collection. Crop Science, 1998, 38(2):509-512.

39 Jafari A A, Anvari H, Nakhjavan S, et al. Effects of phenological stages on yield and quality traits in 22 populations of tall wheatgrass Agropyron elongatum grown in Lorestan, Iran. Journal of Rangeland Science, 2010, 1(1):9-16.

40 马振宇.偃麦和雀麦等属牧草经济性状与营养成份的研究.中国草地学报, 1986,(2):48-51.

Ma Z Y. An investigation on the economic characteristic and nutrient components of grasses. Chinese Journal of Grassland, 1986,(2):48-51.(in Chinese)

41 Tong C Y, Yang G T, AoenBolige, et al. Screening of salttolerant Thinopyrum ponticum under two coastal region salinity stress levels. Frontiers in Genetics, 2022, 13:832013.

42 Robertson J H. Penetration of roots of tall wheatgrass in wet saline-alkali soil. Ecology, 1955, 36(4):755-757.

43 Srivastava N. Reclamation of saline and sodic soil through phytoremediation//Shukla V, Kumar N, eds. Environmental Concerns and Sustainable Development. Singapore:Springer, 2020:298-299.

44 Díaz F J, Grattan S R. Performance of tall wheatgrass (Thinopyrum ponticum, cv.'Jose') irrigated with salinehigh boron drainage water:Implications on ruminant mineral nutrition. Agriculture, Ecosystems&Environment, 2009, 131:128-136.

45 Cun G S, Robinson P H, Benes S E. Bioavailability of selenium in'Jose'tall wheatgrass (Thinopyrum ponticum var'Jose') hay as a substitute for sodium selenite in the diets of dairy cattle. Science of the Total Environment, 2015, 518/519:159-167.

46 Rév A, Tóth B, SoltiÁ, et al. Responses of Szarvasi-1 energy grass to sewage sludge treatments in hydroponics. Plant Physiology and Biochemistry, 2017, 118:627-633.

47 Yang H, Wong J W, Yang Z M, et al. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Journal of Environmental Sciences, 2001, 13(3):368-375.

48 Fuller R D, Nelson E, Richardson C. Reclamation of red mud (bauxite residues) using alkaline-tolerant grasses with organic amendments. Journal of Environmental Quality, 1982, 11(3):533-539.

49 Ciria C S, Sastre C M, Carrasco J, et al. Tall wheatgrass (Thinopyrum ponticum (Podp)) in a real farm context, a sustainable perennial alternative to rye (Secale cereale L.) cultivation in marginal lands. Industrial Crops and Products, 2020, 146:1-8.

50 Trammell M A, Butler T J, Word K M, et al. Registration of NFTW6001 tall wheatgrass germplasm. Journal of Plant Registrations, 2016, 10(2):166-170.

51 Scordia D, Papazoglou E G, Kotoula D, et al. Towards identifying industrial crop types and associated agronomies to improve biomass production from marginal lands in Europe. GCB Bioenergy, 2022, 14(7):710-734.

52 Trammell M A, Hopkins A A, Butler T J, et al. Registration of'Plainsmen'tall wheatgrass. Journal of Plant Registrations, 2021, 15(3):415-421.

53 Lawrence T. Orbit, tall wheatgrass. Canadian Journal of Plant Science, 1967, 47(5):611-612.

54 Lawrence T. Registration of Orbit tall wheatgrass. Crop Science, 1977, 17(6):980.

55 Smith K F. Tall wheatgrass (Thinopyrum ponticum (Podp.) Z.W. Liu+R.R. C. Wang):A neglected resource in Australian pasture. New Zealand Journal of Agricultural Research, 1996, 39(4):623-627.

56 Borrajo C I, Sánchez-Moreiras A M, Reigosa M J. Ecophysiological responses of tall wheatgrass germplasm to drought and salinity. Plants, 2022, 11(12):1548.

57 汪文佳,宋运贤,胡伟娟,等.(小麦×长穗偃麦草) F1与长穗偃麦草生物量积累相关性状的比较.草业科学, 2020, 37(9):1821-1832.

Wang W J, Song Y X, Hu W J, et al. Comparison of biomass accumulation related traits in (common wheat×tall wheatgrass) F1 and its parents. Pratacultural Science, 2020, 37(9):1821-1832.(in Chinese)

58 王天威,曹艳红,杨果,等.乳酸菌对青贮品质及草食家畜健康的影响.中国科学:生命科学, 2020, 50(9):927-938.

Wang T W, Cao Y H, Yang G, et al. Effects of lactic acid bacteria on the quality of silage and health of ruminants. Scientia Sinica Vitae, 2020, 50(9):927-938.(in Chinese)