•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

biogeochemical cycles,agriculture carbon peak,agriculture carbon neutrality,response strategy

Document Type

Policy & Management Research

Abstract

Biogeochemical cycle is the basic theory of matter (elements) flow among atmosphere, hydrosphere, biosphere and lithosphere, which provides important guidance to achieving the national goal of agriculture carbon peak (ACP) and agriculture carbon neutrality (ACN). As a basic industry, agriculture has large-scale temporal and spatial influence on the greenhouse effect, hence great importance should be attached to ACP and ACN in order to assist the overall strategy of achieving national carbon peak and neutrality. Based on the view of biogeochemical cycle and connotations of ACP and ACN, this article analyzes the paths to achieve ACP and ACN, and discusses the following five aspects:the challenges of ACP, the challenges of ACN, potentials of ACN, misunderstandings of ACN, and biosphere's important role in CO2 reduction. The article also makes strategy suggestions for realizing our national goal of carbon peak and neutrality from the perspectives of ACP and ACN, as well as science and technology innovation.

First page

435

Last Page

443

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 IPCC. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 2013.

2 IPCC. The Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge Press, 2021.

3 Drouet L, Bosetti V, Tavoni M. Selection of climate policies under the uncertainties in the fifth assessment report of the IPCC. Nature Climate Change, 2015, 5:937-940.

4 UNFCCC. Paris Agreement. (2015-12-12)[2022-04-22] https://unfccc.int/sites/default/files/english_paris_agreement.pdf.

5 IPCC. Special Report on Global Warming of 1.5℃. Cambridge:Cambridge University Press, 2018.

6 Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2020.

Earth System Science Data, 2020, 12:3269-3340.

7 郭爽. 英国公布 2 0 5 0年实现净零排放战略.(2021-10-22)[2022-04-11]https://news.sciencenet.cn/sbhtmlnews/2021/10/365974.shtm. Guo S. Britain unveils strategy to achieve net zero emissions by 2050. (2021-10-22)[2022-04-11] https://news.sciencenet.cn/sbhtmlnews/2021/10/365974.shtm. (in Chinese)

8 方精云. 碳中和的生态学透视. 植物生态学报, 2021, 45(11), 1173-1176.

Fang J Y. Ecological perspectives of carbon neutrality. Chinese Journal of Plant Ecology, 2021, 45(11), 1173-1176. (in Chinese)

9 王鹤年. 地球化学. 北京:科学出版社, 1979.

Wang H N. Geochemistry. Beijing:Science Press, 1979. (in Chinese)

10 International Energy Agency. CO2 Emissions from Fuel Combustion. Washington DC:International Energy Agency, 2020.

11 Jones D, Murphyd D, Khalid M, et al. Short-term biochar induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology and Biochemistry, 2011, 43(8):1723-1731.

12 Pan Y, Birdsey R A, Fand J Y, et al. A large and persistent carbon sink in the world's forests. Science, 2011, 333:988-993.

13 Carvalhais N, Forkel M, Khomik M, et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 2014, 514:213-217.

14 FAO. Global Forest Resources Assessment 2010.

Roman:FAO, 2010, doi:10.4060/ca8753en.

15 Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575:87-97.

16 Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575:87-97.

17 Liu Y W, Piao S L, Gasser T, et al. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 2019, 12:809-814.

18 方精云, 郭兆迪, 朴世龙, 等. 1981-2000年中国陆地植被碳汇的估算. 中国科学(D辑):地球科学, 2007, 37(6):804-812.

Fang J Y, Guo Z D, Piao S L, et al. Estimation of carbon sink of Terrestrial vegetation in China from 1981 to 2000.

Science in China:Earth Science, 2007, 37(6):804-812. (in Chinese)

19 Piao S, Ciais P, Friedlingstein P, et al. Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles, 2009, 23(4):GB4026.

20 Qin Z, Huang Y, Zhuang Q. Soil organic carbon sequestration potential of cropland in China. Glob Biogeochemical Cycle, 2013, 27:711-722.

21 Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304:1623-1627.

22 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献. 中国科学:生命科学, 2022, 52(4):534-574.

Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 2022, 52(4):534-574. (in Chinese)

23 Kuzyakov Y, Subbotina I, Chen H, et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry, 2009, 41(2):210-219.

24 Zhao S, Zhu C, Zhou D, et al. Organic carbon storage in China's urban areas. PLoS One, 2013, 8(8):e71975.

25 Qin Z, Griscom B, Huang Y, et al. Delayed impact of natural climate solutions. Global Change Biology, 2021, 27(1):215-217.

26 Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458:1009-1013.

27 Zhai W. Quantifying air-sea re-equilibration-implied ocean surface CO2 accumulation against recent atmospheric CO2 rise. Journal of Oceanography, 2016, 72(3):651-659.

28 李飞跃, 梁媛, 汪建飞, 等. 生物炭固碳减排作用的研究进展. 核农学报, 2013, 27(5):681-686.

Li F Y, Liang Y, Wang J F, et al. Biochar to sequester carbon and mitigate greenhouses emission:A review. Journal of Nuclear Agricultural Science, 2013, 27(5):681-686. (in Chinese)

29 张继红, 刘纪化, 张永雨, 等. 海水养殖践行"海洋负排放"的途径. 中国科学院院刊, 2021, 36(3):252-258.

Zhang J H, Liu J H, Zhang Y Y, et al. Strategic approach for mariculture to practice "Ocean Negative Carbon Emission". Bulletin of Chinese Academy of Sciences, 2021, 36(3):252-258. (in Chinese)

30 唐启升, 刘慧. 海洋渔业碳汇及其扩增战略. 中国工程科学, 2016, 18(3):68-73.

Tang Q S, Liu H. Strategy for carbon sink and its amplification in marine fisheries. China Engineering Science, 2016, 18(3):68-73. (in Chinese)

31 王莹, 曹俐. 海水养殖的碳汇潜力估算及其经济发展的脱钩分析——以三大沿海地区为例. 海洋经济, 2020, 10(5):48-56.

Wang Y, Cao L. Estimation of Carbon Sink Potential of Marine Aquaculture and its decoupling from economic development:Taking the three major coastal regions for example. Marine Economy, 2020, 10(5):48-56. (in Chinese)

32 许世卫. 中国食物消费与浪费分析. 中国食物与营养, 2005, (11):6-10.

Xu S W. Analysis of food consumption and waste in China. Food and Nutrient in China, 2005, (11):6-10. (in Chinese)

33 陈军, 但斌. 生鲜农产品的流通损耗问题及控制对策. 管理现代化, 2008, (4):19-21.

Chen J, Dan B. Circulation loss of fresh agricultural products and control countermeasures. Modernization of Management, 2008, (4):19-21. (in Chinese)

34 成升魁, 黄锡生, 胡德胜, 等. 科学立法制止餐饮浪费的若干问题——"食物节约立法"专家笔谈. 自然资源学报, 2020, 35(12):2821-2830.

Cheng S K, Huang X S, Hu D S, et al. Several issues on scientific legislation for prohibiting food waste:Some personal reflections. Journal of Natural Resources, 2020, 35(12):2821-2830. (in Chinese)

Share

COinS