Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
cultivated land redline, remote sensing monitoring, big data research paradigm, food security
Document Type
Scenario Simulation and Intelligent Management and Regulation on Building of a Beautiful China
Abstract
The demographic reality of a large population and limited land resources in China necessitates the implementation of the world’s most stringent cultivated land protection system. Effective, timely, and accurate monitoring of the status of cultivated land protection red line is essential to ensuring cultivated land protection and food security. The development of cutting-edge technologies such as remote sensing big data, cloud computing, and artificial intelligence has provided new opportunities for cultivated land control and monitoring. This article systematically elaborates on the current research status and challenges in the field of cultivated land protection redline control and monitoring, including the establishment of the monitoring object system, the availability of remote sensing data, the accuracy, and timeliness of monitoring results, and other related issues. It introduces advanced technologies and prospects for big data technology in cultivated land redline monitoring and proposes innovative technical solutions for cultivated land redline monitoring. The article also discusses the challenges faced in achieving this paradigm shift in research and provides corresponding recommendations on the connotations of cultivated land protection, delineation of basic land units, and the construction of monitoring networks for implementing national land spatial planning.
First page
1781
Last Page
1792
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 蔡运龙, 傅泽强, 戴尔阜. 区域最小人均耕地面积与耕地资源调控. 地理学报, 2002, (2): 127-134. Cai Y L, Fu Z Q, Dai E F. The minimum area per capita of cultivated land and its implication for the optimization of land resource allocation. Acta Geographica Sinica, 2002, (2): 127-134. (in Chinese)
2 Lark T J, Spawn S A, Bougie M, et al. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nature Communications, 2020, 11: 4295.
3 Potapov P, Turubanova S, Hansen M C, et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nature Food, 2022, 3(1): 19-28.
4 Jiang P H, Cheng Q W, Zhuang Z Z, et al. The dynamic mechanism of landscape structure change of arable landscape system in China. Agriculture, Ecosystems & Environment, 2018, 251: 26-36.
5 Ortiz-Bobea A, Ault T R, Carrillo C M, et al. Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change, 2021, 11(4): 306-312.
6 Whitcraft A K, Becker-Reshef I, Justice C O, et al. No pixel left behind: Toward integrating Earth Observations for agriculture into the United Nations Sustainable Development Goals framework. Remote Sensing of Environment, 2019, 235: 111470.
7 Chen X, Yu L, Du Z R, et al. Toward sustainable land use in China: A perspective on China’s national land surveys. Land Use Policy, 2022, 123: 106428.
8 Brown C F, Brumby S P, Guzder-Williams B, et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific Data, 2022, 9: 251.
9 祖健, 郝晋珉, 陈丽, 等. 耕地数量、质量、生态三位一体保护内涵及路径探析. 中国农业大学学报, 2018, 23(7): 84-95. Zu J, Hao J M, Chen L, et al. Analysis on trinity connotation and approach to protect quantity, quality and ecology of cultivated land. Journal of China Agricultural University, 2018, 23(7): 84-95. (in Chinese)
10 刘丹, 巩前文, 杨文杰. 改革开放40年来中国耕地保护政策演变及优化路径. 中国农村经济, 2018, (12): 37-51. Liu D, Gong Q W, Yang W J. The evolution of farmland protection policy and optimization path from 1978 to 2018. Chinese Rural Economy, 2018, (12): 37-51. (in Chinese)
11 刘洪彬, 李顺婷, 吴梦瑶, 等. 耕地数量、质量、生态“三位一体”视角下我国东北黑土地保护现状及其实现路径选择研究. 土壤通报, 2021, 52(3): 544-552. Liu H B, Li S T, Wu M Y, et al. Current situation and perspectives of black soil protection from the integrated angle of quantity, quality, and ecology in northeast China. Chinese Journal of Soil Science, 2021, 52(3): 544-552. (in Chinese)
12 舒弥, 杜世宏. 国土调查遥感40年进展与挑战. 地球信息科学学报, 2022, 24(4): 597-616. Shu M, Du S H. Forty years’ progress and challenges of remote sensing in national land survey. Journal of Geo-Information Science, 2022, 24(4): 597-616. (in Chinese)
13 Li Z H, He W, Cheng M F, et al. SinoLC-1: The first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data. Earth System Science Data, 2023, 15(11): 4749-4780.
14 Zanaga D, Van De Kerchove R, De Keersmaecker W, et al. ESA WorldCover 10 m 2020 v100. 2021.
15 Karra K, Kontgis C, Statman-Weil Z, et al. Global land use/land cover with Sentinel 2 and deep learning// 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 4704-4707.
16 Liu Y H, Zhong Y F, Ma A L, et al. Cross-resolution national-scale land-cover mapping based on noisy label learning: A case study of China. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103265.
17 Liu S, Wang H D, Hu Y, et al. Land use and land cover mapping in China using multimodal fine-grained dual network. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-19.
18 Chen J, Chen J, Liao A P, et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27.
19 Yang J E, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 2021, 13(8): 3907-3925.
20 Zhang X A, Liu L Y, Chen X D, et al. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 2021, 13(6): 2753-2776.
21 Tu Y, Wu S, Chen B, et al. A 30 m annual cropland dataset of China from 1986 to 2021. Earth System Science Data Discussions, 2023: 1-34.
22 刘纪远, 宁佳, 匡文慧, 等. 2010—2015年中国土地利用变化的时空格局与新特征. 地理学报, 2018, 73(5): 789-802. Liu J Y, Ning J, Kuang W H, et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015. Acta Geographica Sinica, 2018, 73(5): 789-802. (in Chinese)
23 Di Y Y, You N S, Dong J W, et al. Recent soybean subsidy policy did not revitalize but stabilize the soybean planting areas in Northeast China. European Journal of Agronomy, 2023, 147: 126841.
24 You N S, Dong J W, Huang J X, et al. The 10-m crop type maps in Northeast China during 2017–2019. Scientific Data, 2021, 8: 41.
25 Zhang C, Dong J W, Zuo L J, et al. Tracking spatiotemporal dynamics of irrigated croplands in China from 2000 to 2019 through the synergy of remote sensing, statistics, and historical irrigation datasets. Agricultural Water Management, 2022, 263: 107458.
26 Zhang C, Dong J W, Ge Q S. Mapping 20 years of irrigated croplands in China using MODIS and statistics and existing irrigation products. Scientific Data, 2022, 9: 407.
27 Luo Y C, Zhang Z, Chen Y, et al. ChinaCropPhen1km: A high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products. Earth System Science Data, 2020, 12(1): 197-214.
28 Dong J E, Fu Y Y, Wang J J, et al. Early-season mapping of winter wheat in China based on Landsat and Sentinel images. Earth System Science Data, 2020, 12(4): 3081-3095.
29 Li X, Cheng G D, Wang L X, et al. Boosting geoscience data sharing in China. Nature Geoscience, 2021, 14(8): 541-542.
30 张兵. 当代遥感科技发展的现状与未来展望. 中国科学院院刊, 2017, 32(7): 774-784. Zhang B. Current status and future prospects of remote sensing. Bulletin of Chinese Academy of Sciences, 2017, 32(7): 774-784. (in Chinese)
31 Wu B F, Zhang M, Zeng H W, et al. Challenges and opportunities in remote sensing-based crop monitoring: A review. National Science Review, 2023, 10(4): nwac290.
32 董金玮, 吴文斌, 黄健熙, 等. 农业土地利用遥感信息提取的研究进展与展望. 地球信息科学学报, 2020, 22(4): 772-783. Dong J W, Wu W B, Huang J X, et al. State of the art and perspective of agricultural land use remote sensing information extraction. Journal of Geo-information Science, 2020, 22(4): 772-783. (in Chinese)
33 Lu M A, Wu W B, You L Z, et al. A cultivated planet in 2010–Part 1: The global synergy cropland map. Earth System Science Data, 2020, 12(3): 1913-1928.
34 Hao C, Zhang J H, Yao F M. Combination of multi-sensor remote sensing data for drought monitoring over Southwest China. International Journal of Applied Earth Observation and Geoinformation, 2015, 35: 270-283.
35 Bi K F, Xie L X, Zhang H H, et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature, 2023, 619: 533-538.
36 Zhang Y C, Long M S, Chen K Y, et al. Skilful nowcasting of extreme precipitation with NowcastNet. Nature, 2023, 619: 526-532.
37 Chen X, Dong J W, Huang L, et al. Characterizing the 2020 summer floods in South China and effects on croplands. iScience, 2023, 26(7): 107096.
38 Javed T, Zhang J H, Bhattarai N, et al. Drought characterization across agricultural regions of China using standardized precipitation and vegetation water supply indices. Journal of Cleaner Production, 2021, 313: 127866.
39 Dong G N, Liu Z J, Du G M, et al. Assessment of vegetation damage by three typhoons (Bavi, Maysak, and Haishen) in Northeast China in 2020. Natural Hazards, 2022, 114(3): 2883-2899.
40 刘涵, 宫鹏. 21世纪逐日无缝数据立方体构建方法及逐年逐季节土地覆盖和土地利用动态制图——中国智慧遥感制图iMap(China)1.0. 遥感学报, 2021, 25(1): 126-147. Liu H, Gong P. 21st century daily seamless data cube reconstruction and seasonal to annual land cover and land use dynamics mapping-iMap(China)1.0. National Remote Sensing Bulletin, 2021, 25(1): 126-147. (in Chinese)
41 张召才. 吉林一号卫星组星. 卫星应用, 2015, (11): 89.Zhang Z C. Jilin-1 satellite constellation. Satellite Application, 2015, (11): 89. (in Chinese)
Recommended Citation
DONG, Jinwei; CUI, Yifeng; DI, Yuanyuan; GAO, Xuan; CHEN, Xi; YANG, Linsheng; CAI, Yumei; NING, Jia; and LIU, Jiyuan
(2023)
"Opportunities and challenges in monitoring cultivated land red line in big data era,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 38
:
Iss.
12
, Article 8.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20230928001
Available at:
https://bulletinofcas.researchcommons.org/journal/vol38/iss12/8
Included in
Environmental Policy Commons, Food Security Commons, Geographic Information Sciences Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Science and Technology Policy Commons, Sustainability Commons