Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
research front, highly cited paper, development trends in S&T
Document Type
Science and Technology Foresight
Abstract
In 2022, Institutes of Science and Development, Chinese Academy of Sciences (CASISD), the National Science Library, CAS, and Clarivate Analytics released their joint report Research Fronts 2022. The report utilized the Essential Science Indicators (ESI) database to do co-citation analysis. The 2022 report started from 12 610 research fronts in ESI and identified a total of 165 research fronts, including hot and emerging specialties spanning 11 broad research areas in sciences and social sciences. With the 165 research fronts and the related core papers and citing papers as the basis for analysis, this study summarized 8 development trends in science and technology, and recent trends and key research questions in 11 broad research areas, aiming to provide reference for studying and forecasting the major development trends in science and technology, summarizing important research issues and then making systematic deployment.
First page
154
Last Page
166
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 中国科学院科技战略咨询研究院, 中国科学院文献情报中心, 科睿唯安. 2022研究前沿. (2022-12-27). http://webapp.icarebj.com/clarivate/research_fronts_2022/report.htm. Institutes of Science and Development, Chinese Academy of Sciences, National Science Library, Chinese Academy of Sciences, Clarivate. 2022 Research fronts. (2022-12-27). http://webapp.carebj.com/clarivate/research_fronts_2022/report.htm. (in Chinese)
2 Golicz A A, Bayer P E, Bhalla P L, et al. Pangenomics comes of age:From bacteria to plant and animal applications. Trends in Genetics, 2020, 36(2):132-145.
3 Wang W S, Mauleon R P, Hu Z Q, et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557:43-49.
4 Walkowiak S, Gao L L, Monat C, et al. Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588:277-283.
5 Liu Y C, Du H L, Li P C, et al. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182(1):162-176.
6 Prata J C, Silva A L P, Walker T R, et al. COVID-19 pandemic pepercussions on the use and management of plastics. Environmental Science & Technology, 2020, 54(13):7760-7765.
7 Klemeš J J, Fan Y V, Tan R R, et al. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19.
Renewable and Sustainable Energy Reviews, 2020, 127:109883.
8 Silva A L P, Prata J C, Walker T R, et al. Increased plastic pollution due to COVID-19 pandemic:Challenges and recommendations. Chemical Engineering Journal, 2021, 405:126683.
9 王兴, 刘建军. 小行星环境特性分析与研究现状. 航天器环境工程, 2019, 36(6):533-541.
Wang X, Liu J J. Analyses of the environmental characteristics of asteroids and the current research state. Spacecraft Environment Engineering, 2019, 36(6):533-541. (in Chinese)
10 CNES. La France Presente Aux Cotes Du Japon Dans Les Premieres Analyses Des Echantillons Collectes Sur L'Asteroïde Ryugu. (2021-05-11)[2022-12-18]. https://presse.cnes.fr/en/la-france-presente-aux-cotes-du-japon-dans-les-premieresanalyses-des-echantillons-collectes-sur-0.
11 Our World in Data. Coronavirus (COVID-19) Vaccinations. (2022-11-13)[2022-12-18]. https://ourworldindata.org/covidvaccinations.
12 Klok F A, Pai M, Huisman M V, et al. Vaccine-induced immune thrombotic thrombocytopenia. Lancet Haematol. 2022, 9(1):e73-e80.
13 National Institutes of Health. NIH begins study of allergic reactions to Moderna, Pfizer-BioNTech COVID-19 vaccines. (2021-06-18)[2022-12-18]. https://www.nih.gov/news-events/news-releases/nih-begins-study-allergic-reactions-modernapfizer-biontech-covid-19-vaccines.
14 Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596:583-589.
15 Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome. Nature, 2021, 596:590-596.
16 Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373:871-876.
17 Szymkuć S, Gajewska E P, Klucznik T, et al. Computerassisted synthetic planning:The end of the beginning. Angewandte Chemie International Edition, 2016, 55(20):5904-5937.
18 Schwaller P, Laino T, Gaudin T, et al. Molecular transformer:A model for uncertainty-calibrated chemical reaction prediction. ACS Central Science, 2019, 5(9):1572-1583.
19 Segler M H S, Preuss M, Waller M P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 2018, 555:604-610.
20 Lehmann J W, Blair D J, Burke M D. Towards the generalized iterative synthesis of small molecules. Nature Reviews Chemistry, 2018, 2:115.
21 Steiner S, Wolf J, Glatzel S, et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science, 2019, 363:eaav2211.
22 Coley C W, Thomas D A3rd, Lummiss J A M, et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science, 2019, 365:eaax1566.
23 Burger B, Maffettone P M, Gusev V V, et al. A mobile robotic chemist. Nature, 2020, 583:237-241.
24 Kosterlitz J M, Thouless D J. Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C:Solid State Physics, 1973, 6(7):1181-1203.
25 Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized hall conductance in a two-dimensional periodic potential. Physical Review Letters, 1982, 49(6):405-408.
26 Haldane F D. Model for a quantum Hall effect without Landau levels:Condensed-matter realization of the ""parity anomaly"". Physical Review Letters, 1988, 61(18):2015-2018.
27 Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect. Physical Review Letters, 2005, 95(14):146802.
28 König M, Wiedmann S, Brüne C, et al. Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318:766-770.
29 Li J H, Li Y, Du S Q, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Science Advances, 2019, 5(6):eaaw5685.
30 Zhang D Q, Shi M J, Zhu T S, et al. Topological Axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Physical Review Letters, 2019, 122(20):206401.
31 Gong Y, Guo J W, Li J H,et al. Experimental realization of an intrinsic magnetic topological insulator. Chinese Physics Letters, 2019, 36(7):076801.
32 Otrokov M M, Klimovskikh I I, Bentmann H, et al. Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576:416-422.
33 Deng Y J, Yu Y J, Shi M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 2020, 367:895-900.
34 Ge J, Liu Y Z, Li J H, et al. High-Chern-number and hightemperature quantum Hall effect without Landau levels. National Science Review, 2020, 7(8):1280-1287.
35 National Research Council, Division on Engineering and Physical Sciences, Space Studies Board, et al. Solar and Space Physics:A Science for A Technological Society. Washington DC:The National Academies Press, 2013.
36 Verscharen D, Klein K G, Maruca B A. The multi-scale nature of the solar wind. Living Reviews in Solar Physics, 2019, 16(1):5.
37 Fox N J, Velli M C, Bale S D, et al. The solar probe plus mission:Humanity's first visit to our star. Space Science Reviews, 2016, 204(1-4):7-48.
38 Kasper J C, Klein K G, Lichko E, et al. Parker solar probe enters the magnetically dominated solar corona. Physical Review Letters, 2021, 127(25):255101.
39 Müller D, Cyr O C S, Zouganelis I, et al. The solar orbiter mission. Astronomy & Astrophysics, 2020, 642:A1.
40 Hales T C. Historical overview of the Kepler conjecture. Discrete & Computational Geometry, 2006, 36(1):5-20.
41 Hales T, Adams M, Bauer G, et al. A formal proof of the Kepler conjecture. Forum of Mathematics, Pi, 2017, 5:e2.
42 Viazovska M S. The sphere packing problem in dimension 8.
Annals of Mathematics, 2017, 185(3):991-1015.
43 Cohn H, Kumar A, Miller S, et al. The sphere packing problem in dimension 24.
Annals of Mathematics, 2017, 185(3):1017-1033.
44 Castelvecchi D. ‘Mathematics is an unknown land’:Meet Fields Medal winner Maryna Viazovska. Nature, 2022, 607:649.
45 Peng C Z, Zhang J, Yang D, et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Physical Review Letters, 2007, 98(1):010505.
46 Rosenberg D, Harrington J W, Rice P R, et al. Long-distance decoy-state quantum key distribution in optical fiber. Physical Review Letters, 2007, 98(1):010503.
47 Schmitt-Manderbach T, Weier H N, Fürst M, et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Physical Review Letters, 2007, 98(1):010504.
48 Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356:1140-1144.
49 Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549:43-47.
50 Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549:70-73.
51 潘建伟. 量子密钥分发与量子隐形传态//科学技术部基础研究司,科学技术部高技术研究发展中心. 中国基础研究发展报告. 北京:科学出版社, 2019:58-60.
Pan J W. Quantum key distribution and quantum teleportation//Department of Basic Research, Ministry of Science and Technology, HTRDC, Ministry of Science and Technology. China Basic Research Development Report. Beijing:Science Press, 2019:58-60. (in Chinese)
52 Yin J, Li Y H, Liao S K, et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 2020, 582:501-505.
53 Chen Y A, Zhang Q, Chen T Y, et al. An integrated spaceto-ground quantum communication network over 4,600 kilometres. Nature, 2021, 589:214-219.
54 Pirandola S, Laurenza R, Ottaviani C, et al. Fundamental limits of repeaterless quantum communications. Nature Communications, 2017, 8:15043.
55 Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 2018, 557:400-403.
56 Liu H Y, Manzoor A, Wang C Y, et al. The COVID-19 outbreak and affected countries stock markets response. International Journal of Environmental Research and Public Health, 2020, 17(8):2800.
57 Zhang D Y, Hu M, Ji Q. Financial markets under the global pandemic of COVID-19.
Finance Research Letters, 2020, 36:101528.
58 Conlon T, McGee R. Safe haven or risky hazard? Bitcoin during the COVID-19 bear market. Finance Research Letters, 2020, 35:101607.
59 Haroon O, Rizvi S A R. COVID-19:Media coverage and financial markets behavior-A sectoral inquiry. Journal of Behavioral and Experimental Finance, 2020, 27:100343.
Recommended Citation
PAN, Jiaofeng; WANG, Haixia; LENG, Fuhai; ZHANG, Feng; YANG, Fan; YUAN, Jianxia; XING, Ying; FAN, Weiwei; ZHOU, Qiuju; BIAN, Wenyue; ZHANG, Chaoxing; HUANG, Longguang; WANG, Haiming; HAN, Lin; and PEI, Ruimin
(2023)
"2022 Research Fronts: Development Trends and Key Research Questions in 11 Broad Research Areas,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 38
:
Iss.
1
, Article 15.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20221219001
Available at:
https://bulletinofcas.researchcommons.org/journal/vol38/iss1/15