•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

deep-sea, extreme environment, in situ detection, research status and strategies

Document Type

Ocean Observation and Security Assurance Technology

Abstract

The extreme environment of the deep sea has shaped special life processes with great resource potential, and its detection and research are the frontier of international earth science. While the harsh high-pressure environment of the deep sea greatly limits the application of deep-sea sampling and detection technology, the deep-sea in situ detection technology can obtain the component and content information of deep-sea samples without changing the location and state of the measured object, hence it is more and more widely used in the research of deep-sea extreme environment. The deep-sea extreme environment in situ detection technology has a broad prospect. However, as an emerging detection technology, many scientific problems still need to be solved. This study summarizes the international and domestic research progress of deep-sea extreme environment in situ detection technology, and puts forward the future development strategies for the research of deep-sea extreme environment in situ detection technology in China.

First page

932

Last Page

938

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 汪品先. 发展深海科技的前景与陷阱. 科技导报, 2021, 39(3):71-79.

Wang P X. Developing deep-sea science and technology:Perspectives and pitfalls. Science & Technology Review, 2021, 39(3):71-79. (in Chinese)

2 李超伦, 李富超. 深海极端环境与生命过程研究现状与对策. 中国科学院院刊, 2016, 31(12):1302-1307.

Li C L, Li F C. Extreme environment and life process in deep-sea:Research status and strategies. Bulletin of Chinese Academy of Sciences, 2016, 31(12):1302-1307. (in Chinese)

3 丁忠军, 任玉刚, 张奕, 等. 深海探测技术研发和展望. 海洋开发与管理, 2019, 36(4):71-77.

Ding Z J, Ren Y G, Zhang Y, et al. Research and prospect of deep-sea detection technology. Ocean Development and Management, 2019, 36(4):71-77. (in Chinese)

4 Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galapagos Rift. Science, 1979, 203:1073-1083.

5 Kiel S, Little C T. Cold-seep mollusks are older than the general marine mollusk fauna. Science, 2006, 313:1429-1431.

6 Polzin K L, Toole J M, Ledwell J R, et al. Spatial variability of turbulent mixing in the abyssal ocean. Science, 1997, 276:93- 96.

7 Wolff T. The hadal community, an introduction. Deep Sea Research, 1953, 6:95-124.

8 Ding K, Seyfried J W E. Direct pH measurement of NaClbearing fluid with an in situ sensor at 400℃ and 40 megapascals. Science, 1996, 272:1634-1636.

9 Wankel S D, Germanovich L N, Lilley M D, et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nature Geoscience, 2011, 4(7):461-468.

10 Brewer P G, Malby G, Pasteris J D, et al. Development of a laser Raman spectrometer for deep-ocean science. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(5):739-753.

11 李风华, 路艳国, 王海斌, 等. 海底观测网的研究进展与发展趋势. 中国科学院院刊, 2019, 34(3):321-330.

Li F H, Lu Y G, Wang H B, et al. Research progress and development trend of seafloor observation network. Bulletin of Chinese Academy of Sciences, 2019, 34(3):321-330. (in Chinese)

12 李风华, 郭永刚, 吴立新, 等. 海底观测网技术进展与发展趋势. 海洋技术学报, 2015, 34(3):33-35.

Li F H, Guo Y G, Wu L X, et al. Technological progress and development trend of ocean bottom observatory network. Journal of Ocean Technology, 2015, 34(3):33-35. (in Chinese)

13 李德威, 丁忠军, 景春雷, 等. 国际海底观测网络的发展及现状. 海洋开发与管理, 2020, 37(11):13-18.

Li D W, Ding Z J, Jing C L, et al. Present status and development of international seafloor observatory network. Ocean Development and Management, 2020, 37(11):13-18. (in Chinese)

14 Zhang X, Du Z, Zheng R, et al. Development of a new deepsea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 123:1-12.

15 杜增丰, 张鑫, 郑荣儿. 拉曼光谱技术在深海原位探测中的研究进展. 大气与环境光学学报, 2020, 15(1):2-12.

Du Z F, Zhang X, Zheng R E. Research progress and prospect of laser Raman spectroscopy for in-situ detection in deep ocean. Journal of Atmospheric and Environmental Optics, 2020, 15(1):2-12. (in Chinese)

16 陈俊, 张奇峰, 李俊, 等. 深渊着陆器技术研究及马里亚纳海沟科考应用. 海洋技术学报, 2017, 36(1):63-69.

Chen J, Zhang Q F, Li J, et al. Research on the application of the hadal lander technology in the Mariana Trench. Journal of Ocean Technology, 2017, 36(1):63-69. (in Chinese)

17 徐芑南, 叶聪, 王帅, 等. 蛟龙号载人潜水器在大洋勘探中的发展回顾与展望. 中国有色金属学报, 2021, 31(10):2738-2745.

Xu Q N, Ye C, Wang S, et al. Development review and prospect of Jiaolong manned submersible in ocean exploration. The Chinese Journal of Nonferrous Metals, 2021, 31(10):2738-2745. (in Chinese)

18 杨波, 刘烨瑶, 廖佳伟. 载人潜水器——面向深海科考和海洋资源开发利用的"国之重器". 中国科学院院刊, 2021, 36(5):622-631.

Yang B, Liu Y Y, Liao J W. Manned submersibles-Deepsea scientific research and exploitation of marine resources. Bulletin of Chinese Academy of Sciences, 2021, 36(5):622- 631. (in Chinese)

19 刁宏伟, 李宗吉, 王世哲, 等. 水下滑翔机研究现状及发展趋势. 舰船科学技术, 2022, 44(6):8-12.

Diao H W, Li Z J, Wang S Z, et al. The research status and development trend of underwater glider. Ship Science and Technology, 2022, 44(6):8-12. (in Chinese)

20 刘雁集, 杨勇, 张桂臣. 水下滑翔机及其应用技术发展. 船舶工程, 2021, 43(9):14-21.

Liu Y J, Yang Y, Zhang G C. Underwater glider and its application technology development. Ship Engineering, 2021, 43(9):14-21. (in Chinese)

21 戴天娇. 中国无人潜水器跨入深渊和极地科考新阶段. 科学, 2021, 73(6):39.

Dai T J. Chinese unmanned submersible enters new phase of abyssal and polar scientific research. Science Magazine, 2021, 73(6):39. (in Chinese)

22 曹俊, 胡震, 刘涛, 等. 深海潜水器装备体系现状及发展分析. 中国造船, 2020, 61(1):204-218.

Cao J, Hu Z, Liu T, et al. Current situation and development of deep-sea submersible equipment. Shipbuilding of China, 2020, 61(1):204-218. (in Chinese)

Share

COinS