Bulletin of Chinese Academy of Sciences (Chinese Version)


underwater equipment, energy supply, intelligent, clustering, underwater energy station

Document Type

Ocean Observation and Security Assurance Technology


In the process of cognition and exploration of the ocean, underwater observation and detection equipment is the necessary facility to enter and detect the ocean. These types of equipment provide technical support for the development and utilization of marine resources and is an important grip for the implementation of China's marine strategy and the construction of a strong marine country. However, limited by the current level of energy supply, the underwater equipment has problems such as single operation capacity and short single endurance time, which cannot meet the needs of long-term operation under complex working conditions. As the development of marine resources and the defense of sea frontiers in various countries in the world are becoming more and more intense, the construction of transparent marine engineering and submarine factories urgently need to build intelligent underwater equipment clusters, and urgently need energy and power support with high energy density, high safety, high reliability, and long life. Therefore, we need to innovate the underwater energy supply model, build a powerful underwater energy base station with multiple complementary functions of "generating, storing, transmitting, and using", and overcome the technical bottleneck of underwater energy supply, Providing sufficient energy and power for intelligent and clustered underwater equipment to better assist the construction of China's marine capability.

First page


Last Page





Bulletin of Chinese Academy of Sciences


1 高峰, 王辉, 王凡, 等. 国际海洋科学技术未来战略部署. 世界科技研究与发展, 2018, 40(2):113-125.

Gao F, Wang H, Wang F, et al. Future strategic deployment of international marine science and technology. World Sci-Tech Research & Development, 2018, 40(2):113-125. (in Chinese)

2 郎舒妍, 曾晓光, 赵羿羽. 2030:全球海洋技术趋势. 中国船检, 2017, (6):90-92.

Lang S Y, Zeng X G, Zhao Y Y. 2030:Trends of Global Marine Technology. China Ship Survey, 2017, (6):90-92. (in Chinese)

3 赵羿羽, 曾晓光, 郎舒妍. 深海装备技术发展趋势分析. 船舶物资与市场, 2016, (5):42-45.

Zhao Y Y, Zeng X G, Lang S Y. Analysis on the development trend of deep sea equipment technology. Marine Equipment/Materials & Marketing, 2016, (5):42-45. (in Chinese)

4 李一平, 李硕, 张艾群. 自主/遥控水下机器人研究现状. 工程研究-跨学科视野中的工程, 2016, 8(2):217-222.

Li Y P, Li S, Zhang A Q. Research status of autonomous & remotely operated vehicle. Journal of Engineering Studies, 2016, 8(2):217-222. (in Chinese)

5 王俊娴, 吴金友. 我国""探索号""机器人首创深潜1000 m 记录. 海洋开发与管理, 1995, 12(1):74.

Wang J X, Wu J Y. China's ""Exploration"" robot sets the record for the first deep dive of 1000 m. Ocean Development and Management, 1995, 12(1):74. (in Chinese)

6 Butler B, den Hertog V. Theseus:a cable-laying AUV//Proceedings of OCEANS' 93.

Victoria:IEEE, 1993:I210-I213.

7 李一平, 封锡盛."" CR-01"" 6000 m自治水下机器人在太平洋锰结核调查中的应用. 高技术通讯, 2001, 11(1):85- 87.

Li Y P, Feng X S. Application ""CR-01"" autonomous underwater vehicle to the investigation of manganese nodules in the Pacific Ocean. Chinese High Technology Letters, 2001, 11(1):85-87. (in Chinese)

8 Kermorgant H A, Scourzic D. Interrelated functional topics concerning autonomy related issues in the context of autonomous inspection of underwater structures//Europe Oceans 2005.

Brest:IEEE, 2005:1370-1375.

9 Purcell M, von Alt C, Allen B, et al. New capabilities of the REMUS autonomous underwater vehicle//OCEANS 2000 MTS. Providence:IEEE, 2000:147-151.

10 刘健, 徐会希. 潜龙一号:深海里的中国龙. 科技纵览, 2014, (6):92-93.

Liu J, Xu H X. Qianlong No.1:Chinese dragon in the deep sea. IEEE Spectrum, 2014, (6):92-93. (in Chinese)

11 Mendez A, Leo T, Herreros M. Current state of technology of fuel cell power systems for autonomous underwater vehicles. Energies, 2014, 7(7):4676-4693.

12 Warren D, Church R, Davey R. Discovering H.M.S. Ark Royal. Hydro International, 2004, 8(7):28-30.

13 荆有泽, 刘志伟. UUV用动力电池现状及其发展趋势. 电源技术, 2019, 43(6):1073-1076.

Jing Y Z, Liu Z W. Current situation and development trend of power battery for UUV. Chinese Journal of Power Sources, 2019, 43(6):1073-1076. (in Chinese)

14 赵羿羽. 万米级潜水器现状及发展重点. 中国船检, 2018, (9):76-81.

Zhao Y Y. Status and development emphasis of 10 000-meter submersibles. China Ship Survey, 2018, (9):76-81. (in Chinese)

15 Jarry J. NAUTILE's (SM97) first year:The results of the tests and of the first operational dives//OCEANS '85-Ocean Engineering and the Environment. San Diego:IEEE, 1985:990-992.

16 崔维成. ""蛟龙""号载人潜水器关键技术研究与自主创新. 船舶与海洋工程, 2012, 1:1-9.

Cui W C. Key technologies and self innovation of ""JIAOLONG"" manned submersible. Naval Architecture and Ocean Engineering, 2012, 28(1):1-8. (in Chinese)

17 霍海波, 郭明, 崔维成, 等. 深海潜水器电源系统的研究现状分析. 电源技术, 2017, 41(8):1232-1235.

Huo H B, Guo M, Cui W C, et al. Status analysis of power system for deep-sea submersible. Chinese Journal of Power Sources, 2017, 41(8):1232-1235. (in Chinese)

18 戴国群, 陈性保, 胡晨. 锂离子电池在深潜器上的应用现状及发展趋势. 电源技术, 2015, 39(8):1768-1772.

Dai G Q, Chen X B, Hu C. Current status and development trend of lithium-ion battery in underwater vehicle. Chinese Journal of Power Sources, 2015, 39(8):1768-1772. (in Chinese)

19 吴有生, 赵羿羽, 郎舒妍, 等. 智能无人潜水器技术发展研究. 中国工程科学, 2020, 22(6):26-31.

Wu Y S, Zhao Y Y, Lang S Y, et al. Development of autonomous underwater vehicles technology. Strategic Study of CAE, 2020, 22(6):26-31. (in Chinese)

20 李硕, 刘健, 徐会希, 等. 我国深海自主水下机器人的研究现状. 中国科学:信息科学, 2018, 48(9):1152-1164.

Li S, Liu J, Xu H X, et al. Research status of autonomous underwater vehicles in China. Scientia Sinica (Informationis), 2018, 48:1152-1164. (in Chinese)

21 Zhang J J, Zhao J H, Yue L P, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Advanced Energy Materials. 2015, 5:1501082.

22 Zhang J J, Zang X, Wen H J, et al. High-voltage and freestanding poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. Journal of Materials Chemistry A, 2017, 5(1):4940-4948.

23 Wang Y T, Ju J W, Dong S M, et al. Facile design of sulfide-based all solid-state lithium metal battery:In situ polymerization within self-supported porous argyrodite skeleton. Advanced Functional Materials, 2021, 31(28):2101523.

24 Yan Y Y, Ju J W, Dong S M, et al. In situ polymerization permeated three dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Advanced Science, 2021, 8(9):2003887.25 Chai J C, Liu Z H, Ma J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Advanced Science, 2017, 4(2):1600377.

26 Wang C, Zhang H R, Dong S M, et al. High polymerization conversion and stable high-voltage chemistry underpinning an in situ formed solid electrolyte. Chemistry of Materials, 2020, 32(21):9167-9175.

27 Lv Z L, Zhou Q, Zhang S, et al. Cyano-reinforced in situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Materials, 2021, 37:215-223.

28 Wu H, Tang B, Du X F, et al. LiDFOB initiated in situ polymerization of novel eutectic solution enables roomtemperature solid lithium metal batteries. Advanced Science, 2020, 7(23):2003370.

29 崔光磊, 吴天元, 辛云川, 等. 一种深海能源基站及其运行方法:中国, CN201911099729.8. 2020-02-04.

Cui G L, Wu T Y, Xin Y C, et al. A deep-sea energy station and its operation method:China, CN201911099729.8. 2020-02-04. (in Chinese)

30 崔光磊, 吴天元, 辛云川, 等. 一种多电源系统及其运行方法:中国, CN202011508509.9. 2020-02-04.

Cui G L, Wu T Y, Xin Y C, et al. A multi-power system and operation method there of:China, CN202011508509.9. 2020- 02-04. (in Chinese)

31 Xiang X B, Niu Z M, Lapierre L, et al. Hybrid underwater robotic vehicles:The state-of-the-art and future trends. HKIE Transactions, 2015, 22(2):103-116.