Bulletin of Chinese Academy of Sciences (Chinese Version)


marine environment, information perception, application support

Document Type

Ocean Observation and Security Assurance Technology


With the continuous progress of ocean observation technology, more and more technical means have been provided for marine environmental safety technology. The marine environmental security technology plays an indispensable role in the national Belt and Road Initiatives. Meanwhile, it not only plays a crucial role in the achievement of building a maritime power and the maintenance of national maritime security, but also plays a positive role in promoting the construction of a "community with a shared future for the oceans" and implementing the goal of marine sustainable development. Based on the practical problems, this study introduces the system composition of marine environmental security technology, namely marine environment parameter perception technology, data integrated and analysis technology and application security technology. This paper expounds the current situation of the marine environmental security technology as well as its developmental trends in the future from four perspectives:(1) full-time, global and multidimensional monitoring and detection capability; (2) efficient, safe, stable and reliable information transmission capability; (3) real-time, accurate, objective and quantitative prediction capability; and (4) the capability of accurate tactic selection, efficient and convenient auxiliary decision-making and precise technical support.

First page


Last Page





Bulletin of Chinese Academy of Sciences


1 吴立新, 陈朝晖, 林霄沛, 等. "透明海洋"立体观测网构建. 科学通报, 2020, 65(25):2654-2661.

Wu L X, Chen Z H, Lin X P, et al. Building the integrated observational network of "Transparent Ocean". Science Bulletin, 2020, 65(25):2654-2661. (in Chinese)

2 解鹏飞, 刘玉安, 赵辉, 等. 基于大数据的海洋环境监测数据集成与应用. 海洋技术学报, 2016, 35(1):93-101.

Xie P F, Liu Y A, Zhao H, et al. Integration and application of marine environmental monitoring data based on big data technology. Journal of Ocean Technology, 2016, 35(1):93- 101. (in Chinese)

3 聂俊岚, 陈贺敏, 张继凯, 等. 基于数据相似度的多维海洋数据交互式集成可视化. 海洋通报, 2015, 34(5):586-591.

Nie J L, Chen H M, Zhang J K, et al. Interactive integrated visualization of multidimensional marine data based on the data similarity degree. Marine Science Bulletin, 2015, 34(5):586-591. (in Chinese)

4 单继城, 刘蔚柯. 战场自然环境对军事行动影响. 国防科技, 2017, 38(1):108-112.

Shan J C, Liu W K. Research on battlefield natural environment impacts on military operation efficiency. National Defense Science & Technology, 2017, 38(1):108-112. (in Chinese)

5 于宇, 黄孝鹏, 崔威威, 等. 国外海洋环境观测系统和技术发展趋势. 舰船科学技术, 2017, 39(12):179-183.

Yu Y, Huang X P, Cui W W, et al. Development trends of foreign marine environment observing systems and technologies. Ship Science and Technology, 2017, 39(12):179-183. (in Chinese)

6 樊旭艳, 何锡玉, 杨亮, 等. 海洋遥感在军事海洋环境保障中的应用研究. 海军工程大学学报, 2020, 17(3):39-42.

Fan X Y, He X Y, Yang L, et al. Research on application of ocean remote sensing in military marine environment guarantee. Journal of Naval University of Engineering, 2020, 17(3):39-42. (in Chinese)

7 Johnson G C, Hosoda S, Jayne S R, et al. Argo-two decades:Global oceanography, revolutionized. Annual Review of Marine Science, 2022, 14:379-403.

8 俞建成, 刘世杰, 金文明, 等. 深海滑翔机技术与应用现状. 工程研究, 2016, 8(2):208-216.

Yu J C, Liu S J, Jin W M, et al. The present state of deep-sea underwater glider technologies and applications. Journal of Engineering Studies, 2016, 8(2):208-216. (in Chinese)

9 汪品先. 从海底观测地球-地球系统的第三个观测平台. 自然杂志, 2007, 29(3):125-131.

Wang P X. Seafloor observatories:The third platform for earth system observation. Chinese Journal of Nature, 2007, 29(3):125-131. (in Chinese)

10 陈建冬, 张达, 王潇, 等. 海底观测网发展现状及趋势研究. 海洋技术学报, 2019, 38(6):95-103.

Chen J D, Zhang D, Wang X, et al. Research on the state-ofthe-art and trends of seafloor observatory. Journal of Ocean Technology, 2019, 38(8):95-103. (in Chinese)

11 丁晓进, 洪涛, 刘锐, 等. 低轨卫星物联网体系架构及关键技术研究. 天地一体化信息网络, 2021, 2(4):10-18.

Ding X J, Hong T, Liu R, et al. Research on architecture of LEO satellite internet of things and key technologies. SpaceIntegrated-Ground Information Networks, 2021, 2(4):10-18. (in Chinese)

12 李风华, 路艳国, 王海斌, 等. 海底观测网的研究进展与发展趋势. 中国科学院院刊, 2019, 34(3):321-330.

Li F H, Lu Y G, Wang H B, et al. Research progress and development trend of seafloor observation network. Bulletin of Chinese Academic of Sciences, 2019, 34(3):321-330. (in Chinese)

13 余旋. 基于数据驱动关系依赖的海洋环境大数据预报方法研究. 上海:上海大学, 2021.

Yu X. Research on marine environment big data forecasting method based on data-driven relationship dependence. Shanghai:Shanghai University, 2021. (in Chinese)

14 Song T, Jiang J, Li W, et al. A deep learning method with merged LSTM neural networks for SSHA prediction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, doi:10.1109/JSTARS.2020.2998461.

15 Ham Y G, Kim J H, Luo J J. Deep learning for multi-year ENSO forecasts. Nature, 2019, 573(7775):568-572.

16 Zhang X, Li X. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes Seas. IEEE Transactions on Geoscience and Remote Sensing, 2020, 99:1-11.

17 Gao S, Zhao P, Pan B, et al. A nowcasting model for the prediction of typhoon tracks based on a long short term memory neural network. Acta Oceanologica Sinica, 2018, 37(5):8-12.

18 石绥祥, 王蕾, 余璇, 等. 长短期记忆神经网络在叶绿素a浓度预测中的应用. 海洋学报, 2020, 42(2):134-142.

Shi S X, Wang L, Yu X, et al. Application of long term and short term memory neural network in prediction of chlorophyll a concentration. Haiyang Xuebao, 2020, 42(2):134-142. (in Chinese)

19 李茂林, 余向军, 李庆红. 美国海军业务化海洋预报系统发展历程及启示. 舰船科学技术, 2021, 43(10):181-185.

Li M L, Yu X J, Li Q H. Current status of US Navy operational ocean prediction system. Ship Science and Technology, 2021, 43(10):181-185. (in Chinese)

20 黄海宁, 李宇. 水声目标探测技术研究现状与展望. 中国科学院院刊, 2019, 34(3):264-271.

Huang H N, Li Y. Underwater acoustic detection:Current status and future trends. Bulletin of Chinese Academic of Sciences, 2019, 34(3):264-271. (in Chinese)

21 Wallcraft A J, Kara A B, Hurlburt H E, et al. The NRL layered global ocean model (NLOM) with an embedded mixed layer submodel:Formulation and tuning. Journal of Atmospheric and Oceanic Technology, 2003, 20(11):1601-1615.