•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

industrial process carbon neutral low carbon technologies industrial intelligence industry coupling

Document Type

S&T Supporting Realization of Carbon Peak and Carbon Neutrality Goals - Breakthroughs in Key and Core Technologies

Abstract

Focusing on the four major high carbon emission industries of steel, non-ferrous, chemical industry and building materials, through research and analysis, four low carbon strategies, i.e., green hydrogen/green electricity substitution, raw material/product structure adjustment, process flow re-construction and digital intelligence, are proposed. Combining the current status and the trends of technology development in different industries, a number of advanced low-carbon technologies are suggested, key scientific and technological challenges to be solved are condensed, and suggestions and initiatives to accelerate the application of new technologies and industrial transformation and upgrading are proposed, with a view to providing support for low-carbon and green industrial development.

First page

511

Last Page

521

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 郭玉华, 周继程. 中国钢化联产发展现状与前景展望. 中国 冶金, 2020, 30(7):5-10. Guo Y H, Zhou J C. Current situation and future outlook of steel chemical co-production in China. China Metallurgy, 2020, 30(7):5-10. (in Chinese) 2 王维兴. 高炉富氧鼓风的作用及现状. (2020-08-06). http://www.csteelnews.com/sjzx/hyyj/202008/t20200806_36812.html. Wang W X. The role and current situation of oxygen-enriched blast in blast furnace. (2020-08-06). http://www.csteelnews.com/sjzx/hyyj/202008/t20200806_36812.html. (in Chinese) 3 黑色金属矿产资源强国战略研究专题组. 黑色金属矿产资 源强国战略研究. 北京:科学出版社, 2019. Group of Strategy Study on the Power of Ferrous Metal Mineral Resources. Strategy Study on the Power of Ferrous Metal Mineral Resources. Beijing:Science Press, 2019. (in Chinese) 4 Padamata S K, Yasinskiy A, Polyakov P. A review of secondary aluminum production and its byproducts. The Journal of the Minerals, Metals & Materials Society, 2021, 73(9):2603- 2614. 5 Zhang R, Zheng S L, Ma S H, et al. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. Journal of Hazardous Materials, 2011, 189(3):827-835. 6 郑勇, 王倩, 郑永军, 等. 离子液体体系电解铝技术的研究 与应用进展. 过程工程学报, 2015, 15(4):713-720. Zheng Y, Wang Q, Zheng Y J, et al. Advances in research and application of aluminium electrolysis in ionic liquid systems. The Chinese Journal of Process Engineering, 2015, 15(4):713- 720. (in Chinese) 7 Huan S X, Wang Y W, Peng J P, et al. Recovery of aluminum from waste aluminum alloy by low-temperature molten salt electrolysis. Minerals Engineering, 2020, 154:106386. 8 Huang Y P. Electrochemical behavior of Fe-Ni alloys as an inert anode for aluminum electrolysis. International Journal of Electrochemical Science, 2019, 14(7):6325-6336. 9 Jia Y, Tan Q Y, Sun H Y, et al. Sulfide mineral dissolution microbes:Community structure and function in industrial bioleaching heaps. Green Energy & Environment, 2019, 4(1):29-37. 10 Wu K H, Wang Y R, Wang X R, et al. Co-extraction of vanadium and chromium from high chromium containing vanadium slag by low-pressure liquid phase oxidation method. Journal of Cleaner Production, 2018, 203:873-884. 11 Zhang P Y, Guo Q, Wei G Y, et al. Leaching metals from saprolitic laterite ore using a ferric chloride solution. Journal of Cleaner Production, 2016, 112:3531-3539. 12 国家统计局能源统计司. 中国能源统计年鉴2020. 北京:中 国统计出版社, 2020. Depertment of Energy Statistics, National Bureau of Statistics of China. China Energy Statistical Yearbook 2020. Beijing:China Statistics Press, 2020. (in Chinese) 13 刘雨虹, 龚雅妮. 2020石油化工技术进展与趋势. 世界石油 工业, 2020, 27(6):75-80. Liu Y H, Gong Y N. Development and trend of petrochemical technologies in 2020. World Petroleum Industry, 2020, 27(6):75-80. (in Chinese) 14 叶茂, 朱文良, 徐庶亮, 等. 关于煤化工与石油化工的协调 发展. 中国科学院院刊, 2019, 34(4):417-425. Ye M, Zhu W L, Xu S L, et al. Coordinated development of coal chemical and petrochemical industries in China. Bulletin of Chinese Academy of Sciences, 2019, 34(4):417-425. (in Chinese) 15 Wang M, Khan M A, Mohsin I, et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber- Bosch processes?. Energy & Environmental Science, 2021, 14(5):2535-2548. 16 MacFarlane D R, Cherepanov P V, Choi J, et.al. A roadmap to the ammonia economy. Joule, 2020, 4(6):1186-1205. 17 李航宇, 阎蕊珍, 闫亚杰, 等. 粉煤灰取代水泥对再生混凝 土砖性能的影响. 新型建筑材料, 2020, 47(2):92-94. Li H Y, Yan R Z, Yan Y J, et al. Effect of replacing cement with fly ash on properties of recycled concrete brick. New Building Material, 2020, 47(2):92-94. (in Chinese) 18 王新频, 宋教利, 李光鑫. 我国水泥工业碳达峰与碳中和前 景展望. 水泥, 2021, (8):1-9. Wang X P, Song J L, Li G X. Prospect of carbon peak and carbon neutrality of China cement industry. Cement, 2021, (8):1-9. (in Chinese) 19 朱兵兵, 郑志龙, 邹兴芳. 水泥企业碳减排技术路径浅析. 水泥, 2021, (1椰爩琺甴愭氵?瀠牚潨捵攠獂猠?攬渠杚楨湥敮敧爠楚渠杌???潯浵瀠畘琠敆爮猠?慮湡摬??桩敳洠楯捦愠汣??湢杯楮渠敥敭物楳湳杩??㈠ひ??????????????ology path of cement enterprises. Cement, 2021, (10):4-5. (in Chinese) 20 Zhang X P, Li C S, Fu C, et al. Environmental impact assessment of chemical process using the green degree method. Industrial & Engineering Chemistry Research, 2008, 47(4):1085-1094. 21 Zhang X P, Gundersen T, Roussanaly S, et al. Carbon chain analysis on a coal IGCC-CCS system with flexible multiproducts. Fuel Processing Technology, 2013, 108:146-153. 22 Zhang X P, Solli C, Hertwich E G, et al. Exergy analysis of the process for dimethyl ether production through biomass steam gasification. Industrial & Engineering Chemistry Research, 2009, 48(24):10976-10985. 23 Gu X C, Zhang X C, Yang Z F, et al. Technical-environmental assessment of CO2 conversion process to dimethyl carbonate/ethylene glycol. Journal of Cleaner Production, 2021, 288:125598. 24 Chang F, Zhan G X, Wu Z X, et al. Technoeconomic analysis and process design for CO2 electroreduction to CO in ionic liquid electrolyte. ACS Sustainable Chemistry & Engineering, 2021, 9(27):9045-9052. 25 Li J H, Ge W, Kwauk M. Meso-scale phenomena from compromise-A common challenge, not only for chemical engineering. doi:10.48550/arXiv.0912.5407. 26 李静海, 胡英, 袁权. 探索介尺度科学:从新角度审视老问 题. 中国科学:化学, 2014, 44(3):277-281. Li J H, Hu Y, Yuan Q. Mesoscience:exploring old problems from a new angle. Scientia Sinica (Chimica), 2014, 44(3):277- 281. (in Chinese) 27 Li J H, Ge W, Wang W, et al. From Multiscale Modeling to Mesoscience. Berlin:Springer, 2013. 28 Ge W, Wang W, Yang N, et al. Meso-scale oriented simulation towards virtual process engineering (VPE)-The EMMS Paradigm. Chemical Engineering Science, 2011, 66(19):4426- 4458. 29 葛蔚, 郭力, 李静海, 等. 关于超级计算发展战略方向的思 考. 中国科学院院刊, 2016, 31(6):614-623. Ge W, Guo L, Li JH, et al. Thinkings on development strategy of supercomputing. Bulletin of Chinese Academy of Sciences. 2016, 31(6):614-623. (in Chinese) 30 Ge W, Guo L, Liu X H, et al. Mesoscience-based virtual process engineering. Computers and Chemical Engineering, 2019, 126: 68-82.

2205CG00145.pdf (2176 kB)

Click link below to download English version.

2205CG00145.pdf (2176 kB)

Share

COinS