•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

low-dimensional materials; electronic devices; flexible devices; spintronics; optical electronics; energy

Document Type

Advanced Materials Science Development Strategy and Innovative Practice

Abstract

The rapid development of the information society puts forward an ever-increasing urgent need for information storage, processing, and transmission capabilities. With the ending of Moore's Law, the semiconductor industry urgently needs to find new solutions. Lowdimensional materials are considered to be a new breakthrough in the semiconductor industry in the post-Moore era, because of the size characteristics of atomic-level thickness, the structural advantage of no dangling bonds on the surface, and the sensitivity to electrical and optical control methods caused by a large specific surface area. Songshan Lake Materials Laboratory has introduced a group of top scientists and established a low-dimensional materials team. The research of the team, based on basic science and guided by engineering applications, focuses on tackling key issues. The goal is to achieve world-class influential scientific research results, and to deploy China low-dimensional materials industry.

First page

368

Last Page

374

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353:aac9439. 2 Geim A K. Graphene:Status and prospects. Science, 2009, 324:1530-1534. 3 Lembke D, Bertolazzi S, Kis A. Single-layer MoS2 electronics. Accounts of Chemical Research, 2015, 48(1):100-110. 4 Li N, Wang Q, Shen C, et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nature Electronics, 2020, 3:711-717. 5 Li L, Yang F, Ye G J, et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nature Nanotechnology, 2016, 11:593-597. 6 Deng Y J, Yu Y J, Shi M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 2020, 367:895-900. 7 Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556:80-84. 8 Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556:43-50. 9 Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546:265-269. 10 Huang B, Clark G, Navarro-Moratalla E, et al. Layerdependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546:270-273. 11 Long G, Henck H, Gibertini M, et al. Persistence of magnetism in atomically thin MnPS3 crystals. Nano Letters, 2020, 20(4):2452-2459. 12 Liu Y P, Zeng C, Zhong J H, et al. Spintronics in twodimensional materials. Nano-Micro Letters, 2020, 12:1-26. 13 Li T, Guo W, Ma L, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nature Nanotechnology, 2021, 16:1201-1207. 14 Wang J, Xu X, Cheng T, et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nature Nanotechnology, 2022, 17:33-38. 15 Wu L, Wang A, Shi J, et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nature Nanotechnology, 2021, 16:882-887. 16 Liu L, Liu C, Jiang L, et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nature Nanotechnology, 2021, 16:874-881. 17 Wei Z, Tang J, Li X Y, et al. Wafer-scale oxygen-doped MoS2 monolayer. Small Methods, 2021, 5:2100091. 18 Wang Q Q, Li N, Tang J, et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Letters, 2020, 20(10):7193-7199. 19 Shen C, Chu Y, Wu Q, et al. Correlated states in twisted double bilayer graphene. Nature Physics, 2020, 16:520-525. 20 Long G, Chen Y T, Zhang S G, et al. Probing 2D magnetism through electronic tunneling transport. Materials & Design, 2021, 212:110235. 21 Yu H, Liao M Z, Zhao W J, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano, 2017, 11(12):12001-12007. 22 Wei Z, Liao M Z, Guo Y T, et al. Scratching lithography for wafer-scale MoS2 monolayers. 2D Materials, 2020, 7:045028. 23 Xie L, Liao M Z, Wang S P, et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Advanced Materials, 2017, 29(37):1702522. 1 Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353:aac9439. 2 Geim A K. Graphene:Status and prospects. Science, 2009, 324:1530-1534. 3 Lembke D, Bertolazzi S, Kis A. Single-layer MoS2 electronics. Accounts of Chemical Research, 2015, 48(1):100-110. 4 Li N, Wang Q, Shen C, et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nature Electronics, 2020, 3:711-717. 5 Li L, Yang F, Ye G J, et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nature Nanotechnology, 2016, 11:593-597. 6 Deng Y J, Yu Y J, Shi M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 2020, 367:895-900. 7 Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556:80-84. 8 Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556:43-50. 9 Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546:265-269. 10 Huang B, Clark G, Navarro-Moratalla E, et al. Layerdependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546:270-273. 11 Long G, Henck H, Gibertini M, et al. Persistence of magnetism in atomically thin MnPS3 crystals. Nano Letters, 2020, 20(4):2452-2459. 12 Liu Y P, Zeng C, Zhong J H, et al. Spintronics in twodimensional materials. Nano-Micro Letters, 2020, 12:1-26. 13 Li T, Guo W, Ma L, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nature Nanotechnology, 2021, 16:1201-1207. 14 Wang J, Xu X, Cheng T, et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nature Nanotechnology, 2022, 17:33-38. 15 Wu L, Wang A, Shi J, et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nature Nanotechnology, 2021, 16:882-887. 16 Liu L, Liu C, Jiang L, et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nature Nanotechnology, 2021, 16:874-881. 17 Wei Z, Tang J, Li X Y, et al. Wafer-scale oxygen-doped MoS2 monolayer. Small Methods, 2021, 5:2100091. 18 Wang Q Q, Li N, Tang J, et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Letters, 2020, 20(10):7193-7199. 19 Shen C, Chu Y, Wu Q, et al. Correlated states in twisted double bilayer graphene. Nature Physics, 2020, 16:520-525. 20 Long G, Chen Y T, Zhang S G, et al. Probing 2D magnetism through electronic tunneling transport. Materials & Design, 2021, 212:110235. 21 Yu H, Liao M Z, Zhao W J, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano, 2017, 11(12):12001-12007. 22 Wei Z, Liao M Z, Guo Y T, et al. Scratching lithography for wafer-scale MoS2 monolayers. 2D Materials, 2020, 7:045028. 23 Xie L, Liao M Z, Wang S P, et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Advanced Materials, 2017, 29(37):1702522.

Share

COinS