Bulletin of Chinese Academy of Sciences (Chinese Version)


photonic integration; silicon photonics; heterogenous integration

Document Type

Advanced Materials Science Development Strategy and Innovative Practice


Integrated photonics are fast-developing research field for next generation information technology. Current silicon photonic integrated chips strongly benefit from low-cost and high-density integration properties of existing CMOS technology. But limited by the physical properties of silicon, it is not a perfect material for different types of optoelectronic devices, such as laser sources, modulators, and infrared detectors. Therefore, heterogeneous integration is proposed by combining the advantages of CMOS process and superior opto-electric properties of heterogenous material systems, that can be an essential step towards next generation integrated optoelectronic chips. Here, this paper introduces the rapid progress of integrated photonics nationally and worldwide, while discusses the potential directions and opportunities in this field.

First page


Last Page





Bulletin of Chinese Academy of Sciences


1 周治平. 硅基光电子学. 北京:北京大学出版社, 2012. Zhou Z P. Silicon Based Optoelectronics. Beijing:Peking University Press, 2012. (in Chinese) 2 Soref R, Bennett B. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1):123-129. 3 Liang D, Bowers J E. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light:Advanced Manufacturing, 2021, 2(1):51-75. 4 Rahim A, Spuesens T, Baets R, et al. Open-access silicon photonics:Current status and emerging initiatives. Proceedings of the IEEE, 2018, 106(12):2313-2330. 5 Fang A W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 2006, 14(20):9203-9210. 6 Abbasi A, Verbist J, van Kerrebrouck J, et al. 28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser. Optics Express, 2015, 23(20):26479-26485. 7 Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562:101-104. 8 Xiang C, Jin W, Huang D N, et al. High-performance silicon photonics using heterogeneous integration. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 28(3):1-15. 9 Chang L, Xie W, Shu H, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nature Communications, 2020, 11:1-8. 10 Pu M H, Ottaviano L, Semenova E, et al. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 2016, 3(8):823-826. 11 Shen B, Chang L, Liu J, et al. Integrated turnkey soliton microcombs. Nature, 2020, 582:365-369. 12 Yamaoka S, Diamantopoulos N P, Nishi H, et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nature Photonics, 2021, 15(1):28-35. 13 Shang C, Wan Y T, Selvidge J, et al. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits. ACS Photonics, 2021, 8(9):2555-2566. 14 Chen S, Li W, Wu J, et al. Electrically pumped continuouswave III-V quantum dot lasers on silicon. Nature Photonics, 2016,10(5):307-311. 15 Huang J Z, Wei W Q, Chen J J, et al. P-doped 1300 nm InAs/GaAs quantum dot lasers directly grown on an SOI substrate. Optics Letters, 2021, 46(21):5525-5528. 16 Wei W Q, Wang J H, Zhang B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Applied Physics Letters, 2018, 113(5):053107. 17 Wei W Q, Zhang J Y, Wang J H, et al. Phosphorus-free 15 μm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Optics Letters, 2020, 45(7):2042-2045. 18 Tao L, Yuan L J, Li Y P, et al. 4-λ InGaAsP-Si distributed feedback evanescent lasers with varying silicon waveguide width. Optics Express, 2014, 22(5):5448-5454. 19 Li S Y, Zhang D, Zhao J Y, et al. Silicon micro-ring tunable laser for coherent optical communication. Optics Express, 2016, 24(6):6341-6349. 20 Zhao R L, Guo Y Y, Lu L J, et al. Hybrid dual-gain tunable integrated InP-Si3N4 external cavity laser. Optics Express, 2021, 29(7):10958-10966. 21 Li Y, Zhang Y J, Chen H W, et al. Tunable self-injected fabry-perot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator. Journal of Lightwave Technology, 2018, 36(16):3269-3274. 22 He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nature Photonics, 2019, 13(5):359-364. 23 Lin Z, Lin Y, Li H, et al. High performance polarization management devices based on thin-film lithium niobate. IEEE Photonics Technology Letters, 2021, 33(24):1423-1426. 24 Hu C R, Pan A, Li T A, et al. High-efficient coupler for thinfilm lithium niobate waveguide devices. Optics Express, 2021, 29(4):5397-5406. 25 Wang X J, Zhou P Q, He Y D, et al. Erbium silicate compound optical waveguide amplifier and laser. Optical Materials Express, 2018, 8(10):2970-2990. 26 Yang Y, Li Y P, Wang C X, et al. Rare-earth doped ZnO films:A material platform to realize multicolor and near-infrared electroluminescence. Advanced Optical Materials, 2014, 2(3):240-244. 27 Chen Y H, Li C, Zhou Z W, et al. Room temperature photoluminescence of tensile-strained Ge/Si0.13Ge0.87 quantum wells grown on silicon-based germanium virtual substrate. Applied Physics Letters, 2009, 94(14):141902. 28 Li L, Lin H, Qiao S, et al. Integrated flexible chalcogenide glass photonic devices. Nature Photonics, 2014, 8:643-649. 29 Liu C, Guo J, Yu L, et al. Silicon/2D-material photodetectors:From near-infrared to mid-infrared. Light:Science & Applications, 2021, 10(1):1-21.