•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

Paris Agreement, climate targets, Intergovernmental Panel on Climate Change (IPCC), remaining carbon budget

Document Type

S & T and Society

Abstract

In 2015, by signing up to the Paris Agreement on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) parties pledged to keep global temperatures "well below" 2℃ above pre-industrial levels and to "pursue efforts to limit the temperature increase even further to 1.5℃". Limiting warming to 1.5℃/2℃ requires strictly limiting the total amount of carbon emissions between now and the end of the century. Global mean surface temperature has already witnessed a 1℃ more warming since the pre-industrial era and the cumulative anthropogenic CO2 emission has reached around 2 390 Gt CO2. An accurate estimation of the allowable amount of additional carbon emissions, known as the "remaining carbon budget", is crucial to climate change mitigation activities. In this study, we hope to provide a commentary on improving the quality and reducing the uncertainty in remaining carbon budget estimation. After a brief review on the relationship between carbon cycle and global warming, we introduce the methods for estimating the remaining carbon budget and compare the results presented in a series of assessment reports since IPCC AR5 and IPCC AR6. The reasons for the different estimations of remaining carbon budget presented in the reports are discussed. Finally, the priorities of future research fields/directions toward an accurate estimation of remaining carbon budget are proposed.

First page

216

Last Page

229

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 Obergassel W, Arens C, Hermwille L, et al. Phoenix from the Ashes-Paris Agreement to the United Nations Framework Convention on Climate Change. (2015-12-12)[2021-12-20]. https://www.researchgate.net/publication/291971431_Phoenix_from_the_Ashes-An_Analysis_of_the_Paris_Agreement_to_the_United_Nations_Framework_Convention_on_Climate_Change. 2 IPCC. Summary for policymakers//Masson-Delmotte V, Zhai P M, Pirani A, et al. Climate Change 2021:The Physical Science Basis. Cambridge:Cambridge University Press, 2021:3-31. 3 Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2020. Earth System Science Data, 2020, 12(4):3269-3340. 4 Canadell J G, Monteiro P M S, Costa M H, et al. Global carbon and other biogeochemical cycles and feedbacks//Masson-Delmotte, Zhai V P, Pirani A, et al. Climate Change 2021:The Physical Science Basis. Cambridge:Cambridge University Press, 2021:1152-1425. 5 Collins M, Knutti R, Arblaster J, et al. Long-term climate change:Projections, commitments and irreversibility//Stocker T F, Qin D H, Plattner G K, et al. Climate Change 2013:The Physical Science Basis. Cambridge:Cambridge University Press, 2013:1029-1136. 6 Rogelj J, Shindell D, Jiang K J, et al. Mitigation pathways compatible with 1.5℃ in the context of sustainable development//Masson-Delmotte V, Zhai P M, Pörtner H O, et al. Global Warming of 1.5℃. Cambridge:Cambridge University Press, 2018:93-174. 7 Zhou T J, Chen X L. Uncertainty in the 2℃ warming threshold related to climate sensitivity and climate feedback. Journal of Meteorological Research, 2015, 29(6):884-895. 8 吴春强, 周天军. CFMIP大气环流模式模拟的东亚云辐射强迫特征. 气象学报, 2011, 69(3):381-399. Wu C Q, Zhou T J. Characteristics of cloud radiative forcings over East Asia as simulated by the AGCMs in the CFMIP. Acta Meteorologica Sinica, 2011, 69(3):381-399. (in Chinese) 9 Wu C Q, Zhou T J, Sun D Z, et al. Water vapor and cloud radiative forcings over the Pacific Ocean simulated by the LASG/IAP AGCM:Sensitivity to convection schemes. Advances in Atmospheric Sciences, 2011, 28(1):80-98. 10 刘景卫, 周天军, 吴春强, 等. 海气耦合模式FGOALS_gl模拟的水汽和云辐射反馈过程. 大气科学, 2011, 35(3):531-546. Liu J W, Zhou T J, Wu C Q, et al. Water vapor and cloud radiative feedback processes in the ocean-atmosphere coupled model FGOALS_gl. Chinese Journal of Atmospheric Sciences, 2011, 35(3):531-546. (in Chinese) 11 郭准, 吴春强, 周天军, 等. LASG/IAP和BCC大气环流模式模拟的云辐射强迫之比较. 大气科学, 2011, 35(4):739-752. Guo Z, Wu C Q, Zhou T J, et al. A comparison of cloud radiative forcings simulated by LASG/IAP and BCC atmospheric general circulation models. Chinese Journal of Atmospheric Sciences, 2011, 35(4):739-752. (in Chinese) 12 郭准, 周天军. 一个改进的诊断层积云方案及其对大气环流模式性能的改进. 中国科学:地球科学, 2014, 44(5):1034-1048. Guo Z, Zhou T J. An improved stratocumulus scheme based on estimated inversion strength and its performance in GAMIL2. Scientia Sinica Terrae, 2014, 44(5):1034-1048. (in Chinese) 13 Chen X L, Zhou T J, Guo Z. Climate sensitivities of two versions of FGOALS model to idealized radiative forcing. Science China:Earth Sciences, 2014, 57(6):1363-1373. 14 张华, 王菲, 汪方, 等. 全球气候变化中的云辐射反馈作用研究进展.中国科学:地球科学, 2021, doi:10.1360/SSTe-2021-0052. Zhang H, Wang F, Wang F, et al. Advances in cloud radiative feedbacks in global climate change. Scientia Sinica Terrae, 2021, doi:10.1360/SSTe-2021-0052. (in Chinese) 15 郭准, 周天军. 新旧两个版本GAMIL模式对1997/98强El Niño年西太平洋暖池区独特云辐射强迫特征的数值模拟. 大气科学, 2012, 36(5):863-878. Guo Z, Zhou T J. The cloud-radiative forcing over the western Pacific warm pool during 1997/98 simulated by two versions of LASG/IAP atmospheric general circulation model. Chinese Journal of Atmospheric Sciences, 2012, 36(5):863-878. (in Chinese) 16 Zhang H P, Wang M H, Guo Z, et al. Low-cloud feedback in CAM5-CLUBB:Physical mechanisms and parameter sensitivity analysis. Journal of Advances in Modeling Earth Systems, 2018, 10(11):2844-2864. 17 Chen X L, Guo Z, Zhou T J, et al. Climate sensitivity and feedbacks of a new coupled model CAMS-CSM to idealized CO2 forcing:A comparison with CMIP5 models., Journal of Meteorological Research, 2019, 33(1):31-45. 18 Zhang B C, Guo Z, Chen X L, et al. Responses of cloudradiative forcing to strong El Niño events over the western Pacific warm pool as simulated by CAMS-CSM. Journal of Meteorological Research, 2020, 34(3):499-514. 19 Shi X L, Chen X L, Dai Y W, et al. Climate sensitivity and feedbacks of BCC-CSM to idealized CO 2 forcing from CMIP5 to CMIP6. Journal of Meteorological Research, 2020, 34(4):865-878.20 Guo Z, Zhou T J, Wang M H, et al. Impact of cloud radiative heating on East Asian summer monsoon circulation. Environmental Research Letters, 2015, 10(7):074014. 21 Chen X L, Zhou T J, Wu P L, et al. Emergent constraints on future projections of the western North Pacific Subtropical High. Nature Communications, 2020, 11:2802. 22 Guo Z, Zhou T, Wang M H, et al. The role of Tibetan summer low clouds in the simulation of the East Asian summer monsoon rain belt. International Journal of Climatology, 2021, doi:10.1002/joc.7405. 23 Ran Y H, Li X, Cheng G D, et al. Distribution of permafrost in China:An overview of existing permafrost maps. Permafrost and Periglacial Processes, 2012, 23(4):322-333. 24 Ding J Z, Chen L Y, Ji C J, et al. Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 2017, 10(6):420-424. 25 Ding J Z, Wang T, Piao S L, et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 2019, 10:4195. 26 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划 (CMIP6)评述. 气候变化研究进展, 2019, 15(5):445-456. Zhou T J, Zou L W, Chen X L. Commentary on the coupled model intercomparison project phase 6 (CMIP6). Advances in Climate Change Research, 2019, 15(5):445-456. (in Chinese) 27 周天军, 陈梓明, 邹立维, 等. 中国地球气候系统模式的发展及其模拟和预估. 气象学报, 2020, 78(3):332-350. Zhou T J, Chen Z M, Zou L W, et al. Development of climate and earth system models in China:Past achievements and new CMIP6 fesults. Acta Meteorologica Sinica, 2020, 78(3):332-350. (in Chinese) 28 周天军, 张文霞, 陈德亮, 等. 2021年诺贝尔物理学奖解读:从温室效应到地球系统科学. 中国科学:地球科学, 2022, doi:10.1360/SSTe-2021-0338. Zhou T J, Zhang W X, Chen D L, et al. Introduction to nobel prize in ohysics 2021:From greenhouse effect to earth system science. Scientia Sinica Terrae, 2022, doi:10.1360/SSTe-2021-0338. (in Chinese) 29 Matthews H D, Tokarska K B, Nicholls Z R J, et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nature Geoscience, 2020, 13:769-779.

Share

COinS