•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

rare earth elements; supply and demand pattern; balanced utilization; optimization strategy

Document Type

China's Strategic and Critical Minerals Strategy

Abstract

Rare earth is one of the key minerals in the global competition. At present, the global rare earth resources and supply pattern are changing, and Western countries are actively building a supply chain to replace China. This paper describes the evolution of China's rare earth supply and demand pattern from the perspective of elements, analyzes the dislocation of supply and demand of China's rare earth elements and the challenges it faces under the great changes, and puts forward the balanced utilization strategy of rare earth elements, which provides an optimization plan for promoting the globalization of the industrial chain and ensuring the safety of China's rare earth resources.

First page

1586

Last Page

1594

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 程建忠, 车丽萍. 中国稀土资源开采现状及发展趋势. 稀土, 2010, 31(2):65-69. Cheng J Z, Che L P. Current mining situation and potential development of rare earth in China. Chinese Rare Earths, 2010, 31(2):65-69. (in Chinese)

2 Nassar N T, Du X Y, Graedel T E. Criticality of the rare earth elements. Journal of Industrial Ecology, 2015, 19(6):1044-1054.

3 黄小卫, 李红卫, 王彩凤, 等. 我国稀土工业发展现状及进展. 稀有金属, 2007, 31(3):279-288. Huang X W, Li H W, Wang C F, et al. Development status and research progress in rare earth industry in China. Chinese Journal of Rare Metals, 2007, 31(3):279-288. (in Chinese)

4 Fishman T, Myers R, Rios O, et al. Implications of emerging vehicle technologies on rare earth supply and demand in the United States. Resources, 2018, 7(1):9.

5 Nassar N T, Wilburn D R, Goonan T G. Byproduct metal requirements for US wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios. Applied Energy, 2016, 183:1209-1226.

6 王路, 汪鹏, 王翘楚, 等. 稀土资源的全球分布与开发潜力评估. 科技导报, 2022, 40(8):27-39. Wang L, Wang P, Wang Q C, et al. Global distribution and development potential of rare earth resources. Science & Technology Review, 2022, 40(8):27-39. (in Chinese)

7 Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability:A case with revolutionary demand from clean technologies. Environmental Science & Technology, 2012, 46(6):3406-3414.

8 Li J S, Peng K, Wang P, et al. Critical rare-earth elements mismatch global wind-power ambitions. One Earth, 2020, 3(1):116-125.

9 Li X Y, Ge J P, Chen W Q, et al. Scenarios of rare earth elements demand driven by automotive electrification in China:2018-2030. Resources, Conservation and Recycling, 2019, 145:322-331.

10 朱铭岳, 崔中倪. 全球稀土市场分析及未来的发展和需求.上海师范大学学报(自然科学版), 2019, 48(6):686-694. Zhu M Y, Cui Z N. Analysis of global rare earth market, and its future development, and demands. Journal of Shanghai Normal University (Natural Sciences), 2019, 48(6):686-694. (in Chinese)

11 Elshkaki A. Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications. Energy, 2020, 202:117697.

12 王晨阳, 汪鹏, 汤林彬, 等. 碳中和背景下中国电动车产业稀土需求预测. 科技导报, 2022, 40(8):50-61. Wang C Y, Wang P, Tang L B, et al. Forecast of rare earth demand driven by electric vehicle industry in China:2010-2060. Science & Technology Review, 2022, 40(8):50-61. (in Chinese)

13 Wang Q C, Wang P, Qiu Y, et al. Byproduct surplus:Lighting the depreciative europium in China's rare earth boom. Environmental Science & Technology, 2020, 54(22):14686-14693.

14 United States Senate. National defense authorization act for fiscal year 2020. Washington D C:House Committee on Rules, 2019.

15 解孟璇, 刘大海, 王春娟. 美国稀土资源需求及其战略政策推进与布局分析. 中国软科学, 2021, (S1):36-45. Xie M X, Liu D H, Wang C J. Analysis of US rare earth resources demand and strategic layout. China Soft Science, 2021, (S1):36-45. (in Chinese)

16 中国地质科学院全球矿产资源战略研究中心. 全球矿产资源形势报告2022. 北京:中国地质科学院全球矿产资源战略研究中心, 2022. Research Center for Strategy of Global Mineral Resources Chinese Academy of Geological Sciences. Report on Global Mineral Resources 2022. Beijing:Research Center for Strategy of Global Mineral Resources Chinese Academy of Geological Sciences, 2022. (in Chinese)

17 Binnemans K, Jones P T, Blanpain B, et al. Recycling of rare earths:A critical review. Journal of Cleaner Production, 2013, 51:1-22.

18 Habib K, Schibye P K, Vestbo A P, et al. Material flow analysis of NdFeB magnets for Denmark:A comprehensive waste flow sampling and analysis approach. Environmental Science & Technology, 2014, 48(20):12229-12237.

19 Machacek E, Richter J L, Habib K, et al. Recycling of rare earths from fluorescent lamps:Value analysis of closingthe-loop under demand and supply uncertainties. Resources, Conservation and Recycling, 2015, 104:76-93.

20 Hoenderdaal S, Tercero Espinoza L, Marscheider-Weidemann F, et al. Can a dysprosium shortage threaten green energy technologies? Energy, 2013, 49:344-355.

21 Pavel C C, Lacal-Arántegui R, Marmier A, et al. Substitution strategies for reducing the use of rare earths in wind turbines. Resources Policy, 2017, 52:349-357.

22 Schulze R, Buchert M. Estimates of global REE recycling potentials from NdFeB magnet material. Resources, Conservation and Recycling, 2016, 113:12-27.

23 Ciacci L, Vassura I, Cao Z, et al. Recovering the "new twin":Analysis of secondary neodymium sources and recycling potentials in Europe. Resources, Conservation and Recycling, 2019, 142:143-152.

24 朱明刚, 孙旭, 刘荣辉, 等. 稀土功能材料2035发展战略研究. 中国工程科学, 2020, 22(5):37-43. Zhu M G, Sun X, Liu R H, et al. Development strategies for rare earth functional materials by 2035. Strategic Study of CAE, 2020, 22(5):37-43. (in Chinese)

25 Mancheri N A, Sprecher B, Bailey G, et al. Effect of Chinese policies on rare earth supply chain resilience. Resources, Conservation and Recycling, 2019, 142:101-112.

Share

COinS