Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
sustainable development goals (SDGs), Big Earth Data, even development, synergy trade-off
Document Type
Strategy & Practice
Abstract
Uneven progresses have been widely detected among goals or regions in global sustainable development, which are ascribed to the heterogeneous resource and environmental conditions and trade-offs among goals. In-depth understanding and efforts to reduce such uneven progresses are essential for the holistic achievement of the sustainable development goals (SDGs). This study discusses how bBig Earth Data supports the assessment of the even development among targets and regions by pointing out its advantages in providing high-frequency and more timely data products with higher spatial resolution for the currently poorly achieved SDGs regarding essential human needs and environmental protection. Moreover, the Big Earth Data brings deeper insights into the pattern and cause of the uneven development and disentangles the core issues that restrict the holistic achievement of SDGs.
First page
963
Last Page
972
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 United Nations. Transforming Our World:The 2030 Agenda for Sustainable Development. New York:United Nations, 2015.
2 Sachs J, Kroll C, Lafortune G, et al. The Decade of Action for the Sustainable Development Goals:Sustainable Development Report 2021. Cambridge:Cambridge University Press, 2021.
3 McGowan P J K, Stewart G B, Long G, et al. An imperfect vision of indivisibility in the Sus tainable Development Goals. Nature Sustainability, 2019, 2(1):43-45.
4 Liu Y L, Du J Q, Wang Y F, et al. Evenness is important in assessing progress towards sustainable development goals. National Science Review, 2020, doi:10.1093/nsr/nwaa238.
5 Pradhan P, Costa L, Rybski D, et al. A systematic study of sustainable development goal (SDG) interactions. Earths Future, 2017, 5(11):1169-1179.
6 Naidoo R, Fisher B. Sus tainable Development Goals:Pandemic reset. Nature, 2020, 583:198-201.
7 Xu Z C, Chau S N, Chen X Z, et al. Assessing progress towards sustainable development over space and time. Nature, 2020, 577:74-78.
8 Fu B J, Zhang J Z, Wang S, et al. Classification-coordination-collaboration:A systems approach for advancing Sus tainable Development Goals. National Science Review, 2020, 7(5):838-840.
9 Pradhan P. Antagonists to meeting the 2030 agenda. Nature Sustainability, 2019, 2(3):171-172.
10 Wu B F, Tian F Y, Zhang M, et al. Cloud services with big data provide a solution for monitoring and tracking Sus tainable Development Goals. Geography and Sustainability, 2020, 1(1):25-32.
11 Fu B J, Wang S, Zhang J Z, et al. Unravelling the complexity in achieving the 17 sustainable-development goals. National Science Review, 2019, 6 (3):386-388.
12 郭华东. 地球大数据科学工程. 中国科学院院刊, 2018, 33(8):818-824.
13 Guo H, Wang L, Liang D. Big Earth Data from space:A new engine for Earth science. Science Bulletin, 2016, 61(7):505-513.
14 郭华东, 王力哲, 陈方, 等. 科学大数据与数字地球. 科学通报, 2014, 59(12):1047-1054.
15 陈方. 地球大数据科学工程:认知地球的新引擎. 卫星与网络, 2018, (6):42-43.
16 Guo H D, Chen F, Sun Z C, et al. Big Earth Data:A practice of sustainability science to achieve the Sustainable Development Goals. Science Bulletin, 2021, 66(11):1050-1053.
17 Nilsson M, Griggs D, Visbeck M. Map the interactions between Sustainable Development Goals. Nature, 2016, 534:320-322.
18 Fader M, Cranmer C, Lawford R, et al. Toward an understanding of synergies and trade-offs between water, energy, and food SDG targets. Frontiers in Environmental Science, 2018, 6:112.
19 Steinberger J K, Roberts J T, Peters G P, et al. Pathways of human development and carbon emissions embodied in trade. Nature Climate Change, 2012, 2(2):81-85.
20 Zhao S Q, Da L J, Tang Z Y, et al. Ecological consequences of rapid urban expansion:Shanghai, china. Frontiers in Ecology and the Environment, 2006, 4(7):341-346.
21 Wang S J, Ma H T, Zhao Y B. Exploring the relationship between urbanization and the eco-environment-a case study of Beijing-Tianjin-Hebei region. Ecological Indicators, 2014, 45:171-183.
22 张军泽, 王帅, 赵文武, 等. 可持续发展目标关系研究进展. 生态学报, 2019, 39(22):8327-8337.
23 Céline E, Mayaux P, Verhegghen A, et al. National forest cover change in congo basin:Deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005. Global change biology, 2013, 19(4):1173-1187.
24 Liu J G, Raven P H. China's environmental challenges and implications for the world. Critical Reviews in Environmental Science and Technology, 2010, 40(9-10):823-851.
25 Xu Z M, Cheng G D, Chen D J, et al. Economic diversity, development capacity and sustainable development of china. Ecological Economics, 2002, 40(3):369-378.
26 Yang C-J, Jackson R B. China's synthetic natural gas revolution. Nature Climate Change, 2013, 3(10):852-854.
27 Chan C K, Yao X. Air pollution in mega cities in china. Atmospheric Environment, 2008, 42(1):1-42.
28 Lu Y L, Song S, Wang R S, et al. Impacts of soil and water pollution on food safety and health risks in china. Environment International, 2015, 77:5-15.
29 Rodell M, Famiglietti J S, Wiese D N, et al. Emerging trends in global freshwater availability. Nature, 2018, 557:651-659.
30 Dalin C, Wada Y, Kastner T, et al. Groundwater depletion embedded in international food trade. Nature, 2017, 543:700-704.
31 Liu J J, Coomes D A, Gibson L, et al. Forest fragmentation in china and its effect on biodiversity. Biological Reviews, 2019, 94(5):1636-1657.
32 Di Minin E, Brooks T M, Toivonen T, et al. Identifying global centers of unsustainable commercial harvesting of species. Science Advances, 2019, 5(4):eaau2879.
33 中国科学院地球大数据科学工程. 地球大数据支撑可持续发展目标报告(2020). (2020-09-15). https://www.fmprc.gov.cn/web/ziliao_674904/zt_674979/dnzt_674981/qtzt/2030kcxfzyc_686343/P020200927634068540177.pdf.
34 Liu Y L, Du J Q, Ding B Y, et al. Water resource conservation promotes synergy between economy and environment in China's northern drylands. Frontiers of Environmental Science & Engineering, 2022, 16(3):28. doi:10.1007/s11783-021-1462-y.
35 关婷, 薛澜. 世界各国是如何执行全球可持续发展目标 (SDGs)的?. 中国人口·资源与环境, 2019, 29(1):11-20.
36 Gleick P H. Water, drought, climate change, and conflict in syria. Weather, Climate, and Society, 2014, 6(3):331-340.
37 邓铭江, 龙爱华. 中亚各国在咸海流域水资源问题上的冲突与合作. 冰川冻土, 2011, 33(6):1376-1390.
38 Guo H. Big Earth data:A new frontier in Earth and information sciences. Big Earth Data, 2017, 1(1-2):4-20.
39 Wu H, Zhang L, Zhang X. Cloud data and computing services allow regional environmental assessment:A case study of Macquarie-Castlereagh Basin, Australia. Chinese Geographic Science, 2019, 29(3):394-404.
40 宁瑶, 刘雅莉, 杜剑卿, 等. 黄河流域可持续发展评估及协同发展策略研究. 生态学报, 2021, doi:10.5846/stxb202012293308.
41 Wu B F, Zeng H W, Yan N N, et al. Approach for estimating available consumable water for human activities in a river basin. Water Resources Management, 2018, 32(7):1-16.
Recommended Citation
LIU, Yali; WANG, Yanfen; DU, Jianqing; GUO, Huadong; WU, Bingfang; and FU, Bojie
(2021)
"Big Earth Data Promotes Assessment of Even Development,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 36
:
Iss.
8
, Article 11.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20210630002
Available at:
https://bulletinofcas.researchcommons.org/journal/vol36/iss8/11