Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
species catalogue; origination; evolution; biodiversity maintenance; ecosystem functioning; ecosystem services; threats to biodiversity; ecological security
Document Type
Biodiversity Conservation and Ecological Civilization
Abstract
There have been rapid progresses in biodiversity science of China in recent two decades. These progresses have been achieved in six key respects: species catalogue, origination and evolution of biodiversity, biodiversity maintenance and its relationships with ecosystem functioning and services, threats to biodiversity and biodiversity's responses to global change, biodiversity and ecological security, and construction of research platforms. However, we still lack theoretical breakthrough in biodiversity science. For further progresses, we propose to: (1) translate basic biodiversity research into biodiversity conservation for sustainable utilization; (2) strengthen application of advanced technologies, including high-throughput sequencing, genomics, and remote sensing; and (3) strengthen and expand international collaborations.
First page
384
Last Page
398
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
1 张莉, 张冬梅. 孙鸿烈谈第一次青藏高原综合科学考察. 科学通报2019. 64(27):2763.
2 Yang Q-E, Zhu G H and Hong D Y et al. World's Largest Flora Completed. Science, 2005, 309(5744): 2163.
3 Wu Z Y, Raven PH Hong D. Flora of China. Beijing: Science Press, 2005.
4 Cui J Z. Fossil Flora of China. Beijing: Higher Education Press, 2009-2019.
5 陈之端, 路安民, 刘冰, 等. 中国维管植物生命之树. 北京: 科学出版社, 2010.
6 Liu J Y. Status of marine biodiversity of the China Seas. PLoS ONE, 2013, 8(1): e50719.
7 Mi X C, Feng G, Hu YB et al. The global significance of biodiversity science in China: an overview, National Science Review 2021, nwab032, https://doi.org/10.1093/nsr/nwab032.
8 中国科学院中国植被图编委会,中国植被图(1: 1000000). 北京: 科学出版社, 2001.
9 中国科学院中国植图被编委会, 中华人民共和国植被图(1: 1000000). 北京: 地质出版社, 2007.
10 Su Y J, Guo Q H, Hu T Y, et al. An updated Vegetation Map of China (1:1000000). Science Bulletin, 2020, 65(13): 1125-1136.
11马克平, 郭庆华. 中国植被生态学研究的进展和趋势. 中国科学: 生命科学, 2021, 51:215-218
12中国植被编委会. 中国植被. 北京: 科学出版社, 1980.
13 王国宏. 中国云杉林. 北京: 科学出版社, 2017.
14 Favre A, Päckert M, Pauls S U, et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biological Reviews, 2015, 90(1): 236-253.
15 Kapp P, DeCelles P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. The American Journal of Science, 2019, 319(3): 159-254.
16 Spicer R A, Su T, Valdes P J, et al. Why the ‘Uplift of the Tibetan Plateau’ is a myth. National Science Review, 2020, nwaa091.
17 Hou Z, Sket B, Fišer C, et al. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35): 14533-14538.
18 Ding W N, Ree R H, Spicer R A, et al. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science, 2020, 369(6503): 578-581.
19 Xing Y, Ree R H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17): E3444-E3451.
20 He Z, Li X, Yang M, et al. Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. National Science Review, 2018, 6(2): 275-288.
21 Zhao Y P, Fan G, Yin P P, et al. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nature Communications, 2019, 10(1): 4201.
22 Tang C Q, Matsui T, Ohashi H, et al. Identifying long-term stable refugia for relict plant species in East Asia. Nature Communications, 2018, 9(1): 4488.
23 Lu L, Mao L, Yang T, et al. Evolutionary history of the angiosperm flora of China. Nature, 2018, 554(7691): 234-238.
24 Xiang H, Liu X, Li M, et al. The evolutionary road from wild moth to domestic silkworm. Nature Ecology & Evolution, 2018, 2(8): 1268-1279.
25 Li Y, von Holdt B M, Reynolds A, et al. Artificial Selection on Brain-Expressed Genes during the Domestication of Dog. Molecular Biology and Evolution, 2013, 30(8): 1867-1876.
26 Wu W, Zheng X M, Lu G, et al. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 2775-2780.
27 Jia J, Zhao S, Kong X, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496(7443): 91-95.
28 Qu Y, Song G, Gao B, et al. The influence of geological events on the endemism of East Asian birds studied through comparative phylogeography. Journal of Biogeography, 2015, 42: 179-192.
29 Feng G, Mao L, Sandel B, et al. High plant endemism in China is partially linked to reduced glacial-interglacial climate change. Journal of Biogeography, 2016, 43(1): 145-154.
30 Wang Z, Brown J H, Tang Z, et al. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(32): 13388-13392.
31 Li Y, Li X, Sandel B, et al. Climate and topography explain range sizes of terrestrial vertebrates. Nature Climate Change, 2016, 6(5): 498-502.
32 Feng G, Ma Z, Benito B M, et al. Phylogenetic age differences in tree assemblages across the Northern Hemisphere increase with long-term climate stability in unstable regions. Global Ecology and Biogeography, 2017,26(9): 1035-1042.
33 Qian H, Jin Y, Ricklefs R E. Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43): 11452-11457.
34 Qian H, Deng T, Jin Y, et al. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(46): 23192-23201.
35 Yan C, Xie Y, Li X, et al. Species co-occurrence and phylogenetic structure of terrestrial vertebrates at regional scales. Global Ecology and Biogeography, 2016, 25(4): 455-463.
36 Ma Z, Guo D, Xu X, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555(7694): 94-97.
37 Chesson P L. Mechanisms of maintenance of species diversity. Annual Review of Ecology, Evolution and Systematics, 2000, 31: 343-66.
38 Wills C, Harms K E, Condit R, et al. Nonrandom processes maintain diversity in tropical forests. Science, 2006, 311(5760): 527-531.
39 Chen L, Comita L S, Wright S J, et al. Forest tree neighborhoods are structured more by negative conspecific density dependence than by interactions among closely related species. Ecography, 2018, 41(7): 1114-1123.
40 Liang M, Liu X, Gilbert G S, et al. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi. Ecology Letters, 2016, 19(12): 1448-1456.
41 Liu X, Etienne R S, Liang M, et al. Experimental evidence for an intraspecific Janzen-Connell effect mediated by soil biota. Ecology, 2015, 96(3): 662-671.
42 Jia S, Wang X, Yuan Z, et al. Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature Communications, 2020, 11(1):286.
43 Chen L, Swenson N G, Ji N, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science, 2019, 366(6461): 124-128.
44 Bruelheide H, Nadrowski K, Assmann T, et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 2014, 5(1): 74-89.
45 Huang Y, Chen Y, Castro-Izaguirre N, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362(6410): 80-83.
46 Liang M, Liu X, Parker I M, et al. Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Science Advances, 2019, 5(10): eaax5088.
47 Wang M Q, Li Y, Chesters D, et al. Multiple components of plant diversity loss determine herbivore phylogenetic diversity in a subtropical forest experiment. Journal of Ecology, 2019, 107(6): 2697-2712.
48 Bongers F J, Schmid B, Durka W, et al. Genetic richness affects trait variation but not community productivity in a tree diversity experiment. New Phytologist, 2020, 227(3):744-756.
49 Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431(7005): 181-184.
50 Liu H, Mi Z, Lin L, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4051-4056.
51 Chen S, Wang W, Xu W et al. Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4027-4032.
52 Isbell F, Gonzalez A, Loreau M, et al. 2017. Linking the influence and dependence of people on biodiversity across scales. Nature, 2017, 546(7656): 65-72.
53 Ouyang Z, Zheng H, Xiao Y, et al. Improvements in ecosystem services from investments in natural capital. Science, 2016, 352(6292): 1455-1459.
54 Lu F, Hu H, Sun W, et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4039-4044.
55 Wei F, Costanza R, Dai Q, et al. The Value of Ecosystem Services from Giant Panda Reserves. Current Biology, 2018, 28(13): 2174-2180.
56 Feng X, Fu B, Piao S, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6(11): 1019-1022.
57 Zheng H, Robinson B E, Liang Y C, et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16681-16686.
58 Bai Y, Wong C P, Jiang B, et al. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nature Communications, 2018, 9(1): 3034.
59 Xu W, Xiao Y, Zhang J, et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 1601-1606.
60 Hu Y B, Thapa A, Fan H Z, et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Science Advances, 2020, 6(9): eaax5751.
61 Zhu S S, Chen J, Zhao J, et al. Genomic insights on the contribution of balancing selection and local adaptation to the long-term survival of a widespread living fossil tree, Cercidiphyllum japonicum. New Phytologist, 2020, 228(5): 1674-1689.
62 Zhou X M, Sun F M, Xu S X, et al. Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nature Communications, 2013, 4(1): 2708.
63 Yang Y Z, Ma T, Wang Z F, et al. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana. Nature Communications, 2018, 9(1): 5449.
64 Feng S H, Fang Q, Barnett R, et al. The genomic footprints of the fall and recovery of the crested ibis. Current Biology, 2019, 29(2): 340-349.
65 Zhao S C, Zheng P P, Dong S S, et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics, 2013, 45(1): 67-71.
66 Ge R L, Cai Q, Shen Y Y, et al. Draft genome sequence of the Tibetan antelope. Nature Communications, 2013, 4(1): 1858.
67 Wei F W, Shan L, Hu Y B, et al. Draft genome sequence of the Tibetan antelope. Scientia Sinica Vitae, 2019, 49: 498-508.
68 Wei F W, Wu Q, Hu Y B, et al. Conservation metagenomics: a new branch of conservation biology. Science China-Life Science, 2019, 62(02): 168-178.
69 Zhou X M, Wang B S, Pan Q, et al. Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history. Nature Genetics, 2014, 46(12): 1303-1310.
70 Hu Y B, Wu Q, Ma S, et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 1081-1086.
71 Nie Y G, Speakman J R, Wu Q, et al. Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science, 2015, 349(6244): 171-174.
72 Zhu L F, Wu Q, Dai J Y, et al. Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): 17714-17719.
73 Zhang Z G, Xu D M, Wang L, et al. Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals. Current Biology, 2016, 26(14): 1873-1979.
74 Hoffmann A A, Sgrò C M. Climate change and evolutionary adaptation. Nature, 2011, 470(7335): 479-485.
75 Corlett R T, Westcott D A. Will plant movements keep up with climate change? Trends in Ecology & Evolution, 2013, 28(8): 482-488.
76 Du W, Shine R. The behavioural and physiological strategies of bird and reptile embryos in response to unpredictable variation in nest temperature. Biological Reviews, 2015, 90(1): 19-30.
77 Piao S, Liu Q, Chen A, et al. Plant phenology and global climate change Current progress and challenges. Global Change Biology, 2019, 25(6): 1922-1940.
78 Liang E, Wang Y, Piao S, et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(16): 4380-4385.
79 Xu W, Svenning J C, Chen G, et al. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26674-26681.
80 Ge Q, Wang H J, Rutishauser T, et al. Phenological response to climate change in China a meta-analysis. Global Change Biology, 2015, 21(1): 265-274.
81 Shen M, Piao S, Dorji T, et al. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2015, 2(4): 454-467.
82 Yang B, He M, Shishov V, et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6966-6971.
83 Yu H, Luedeling E, Xu J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51): 22151-22156.
84 Du W, Zhao B, Chen Y, et al. Behavioral thermoregulation by turtle embryos. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(23): 9513-9515.
85 Li T, Zhao B, Zhou Y, et al. Thermoregulatory Behavior Is Widespread in the Embryos of Reptiles and Birds. American Naturalist, 2014, 183(3): 445-451.
86 Huang X, Li S, Ni P, et al. Rapid response to changing environments during biological invasions: DNA methylation perspectives. Molecular Ecology, 2017, 26(23): 6621-6633.
87 Liu B, Yan J, Li W, et al. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nature Communications, 2020, 11(1): 340.
88 Feng Y, Lei Y, Wang R, et al. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1853-1856.
89 Liu X, Li X, Liu Z, et al. Congener diversity, topographic heterogeneity and human assisted dispersal predict spread rates of alien herpetofauna at a global scale. Ecology Letters, 2014, 17(7): 821-829.
90 Zhang Y, Pennings S C, Li B, et al. Biotic homogenization of wetland nematode communities by exotic Spartina alterniflora in China. Ecology, 2019, 100(4): e02596.
91 Li X, Liu X, Kraus F, et al. Risk of biological invasions is concentrated in biodiversity hotspots. Frontiers in Ecology and the Environment, 2016, 14(8): 411-417.
92 Liu X, Blackburn T M, Song T, et al. Risks of Biological Invasion on the Belt and Road. Current Biology, 2019, 29(3): 499-505.
93 Lu Y, Wu K, Jiang Y, et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature, 2012, 487(7407): 362-365.
94 Lu Y, Wu K, Jiang Y, et al. Mirid Bug Outbreaks in Multiple Crops Correlated with Wide-Scale Adoption of Bt Cotton in China. Science, 2010, 328(5982): 1151-1154.
95 马克平, 朱敏, 纪力强, 等. 中国生物多样性大数据平台建设。中国科学院院刊,2018, 33: 838-845.
96 Li C, Fraser N C, Rieppel O, et al. A Triassic stem turtle with an edentulous beak. Nature, 2018, 560 (7719): 476.
97 Zhao X, Wang B, Bashkuev A S, et al. Mouthparthomologies and life habits of Mesozoic long-proboscid scorpionflies. Science Advances, 2020, 6(10): eaay1259.
98 Zhang LU, Wang XIN, Zhang J et al. Formulating a list of sites of waterbird conservation significance to contribute to China’s Ecological Protection Red Line. Bird Conservation International 2017; 27(2): 153-66.
99 冯晓娟, 米湘成, 肖治术,等. 中国生物多样性监测与研究网络建设及进展. 中国科学院院刊 2019, 34(12): 1389-1398.
100 马克平,徐学红. 中国森林生物多样性监测网络有力支撑生物群落维持机制研究. 中国科学: 生命科学, 2020, 50: 359–361
101 Xu H, Cao M, Wu Y, et al. Optimized monitoring sites for detection of biodiversity trends in China. Biodiversity and Conservation, 2017, 26(8): 1959-1971.
102 Niu X, Wang B. Assessment of forest ecosystem services in China: A methodology. Journal of Food, Agriculture & Environment, 2013, 11(3): 2249-2254.
103 国家林业和草原局. 中国森林资源报告(2014—2018). 北京: 中国林业出版社, 2019.
104 贺鹏, 陈军, 乔格侠. 中国科学院生物标本馆(博物馆)的现状与未来. 中国科学院院刊, 2019, 34(12): 1359-1370.
105 肖翠, 雒海瑞, 陈铁梅, 等. 国家标本资源共享平台数字化进展与现状分析, 科研信息化技术与应用,2017, 1674-9480.
106 焦阳, 邵云云, 廖景平, 等. 中国植物园现状及未来发展策略. 中国科学院院刊, 2019, 34(12):1351-1358.
107 Gao J. How China will protect one-quarter of its land. Nature, 2019, 569(7757): 457.
108 唐芳林, 闫颜, 刘文国. 我国国家公园体制建设进展. 生物多样性, 2019, 27(2): 123-127.
109 Zhang J, Qian H, Girardello M, et al. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proceedings of the Royal Society B: Biological Sciences, 2018, 285: 20180949.
110 Asner G P, Martin R E, Knapp D E, et al. Forest conservation airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 2017, 355(6323): 385-389.
111 Schneider F D, Morsdorf F, Schmid B, et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communications, 2017, 8(1): 1441.
112 Hughes A C, Lechner A M, Chitov A, et al. Horizon Scan of the Belt and Road Initiative. Trends in Ecology & Evolution, 2020, 35(7): 583-593.
113 Liu J, Milne R I, Cadotte M W, et al. Protect Third Pole's fragile ecosystem. Science, 2018, 362(6421), 1368-1368.
Recommended Citation
MI, Xiangcheng; FENG, Gang; ZHANG, Jian; HU, Yibo; ZHU, Li; and MA, Keping
(2021)
"Review on Biodiversity Science in China,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 36
:
Iss.
4
, Article 7.
DOI: https://doi.org/10.16418/j.issn.1000-3045.20210307002
Available at:
https://bulletinofcas.researchcommons.org/journal/vol36/iss4/7