Bulletin of Chinese Academy of Sciences (Chinese Version)


material monism, Copenhagen interpretation, three worlds, objective knowledge, objective quantum measurement

Document Type

Philosophy and Science


Base on the view of material monism, this paper explains how quantum mechanics describes the objectivity of the microscopic world. It points out that the challenge posed by the Copenhagen interpretation to the fundamental problem of philosophy is not essential, due to its adoption of the wave-packet collapse hypothesis which is non-unique to implement repeatable measurement. Therefore, the conclusion that matter and consciousness are inseparable is not rigorous either from scientific or from philosophical perspective. With regard to Karl Popper's philosophy of "three worlds", our quantum theory of measurement describes how the multiple observers probe into the micro system to obtain the objective knowledge about the microworld with objective quantum measurements, thus gives an ontological interpretation to the objective knowledge world (World 3) of Popper:the material world (World 1) interacts with the materialized carrier of spiritual perception world (World 2), forming the correlations or entanglements between the two worlds. These correspond to all mental perception including the subjective world. Here, the objective part, which can be defined by the objective quantum measurement, constitutes the objective knowledge world (World 3) of micro system. As the objective knowledge world emerges, the information flows from the material world to the subjective object. The direction of information flow defines the materialized carrier of spiritual perception, that is different from the usual material world.

First page


Last Page





Bulletin of Chinese Academy of Sciences


1 恩格斯.费尔巴哈与德国古典哲学的终结.北京:人民出版社, 1949.

2 爱因斯坦.爱因斯坦文集.许良英,译.北京:商务印书馆, 2010.

3 派斯.玻尔传.戈革,译.北京:商务印书馆, 2001.

4 派斯.基本粒子物理学史.关洪,杨建邺,王自华,等,译.武汉:武汉出版社, 2002.

5 彭桓武.量子理论的诞生和发展——从量子论到量子力学.物理, 2001, 30(5):265-270.

6 Born M. The quantum mechanics of the impact process. Zeitschrift für Physik, 1926, 37:863-867.

7 Born M. Quantum mechanics in impact processes. Zeitschrift für Physik, 1926, 38:803.

8 海森堡.量子论的物理原理.王正行,译.北京:高等教育出版社, 2017.

9 卡西第.海森伯传.戈革,译.北京:商务印书馆, 2002.

10 Heisenberg W. The development of quantum mechanics, Nobel Lecture.(1933-11-11)[2021-02-18]. http://www.nobelprize.org/nobel_prizes/physics/laureates/1932/heisenberg-lecture.html.

11 von Neumann J. Mathematical Foundations of Quantum Mechanics. Princeton:Princeton University Press, 1955.

12 Jammer M. The Conceptual Development of Quantum Mechanics. New York:MacGraw Hill Book Compony, 1966.

13 玻恩,爱因斯坦.玻恩-爱因斯坦书信集(1916-1955):动荡时代的友谊、政治和物理学.范岱年,译.上海:上海科技教育出版社, 2010.

14 约翰·格里宾.量子、猫与罗曼史:薛定谔传.匡志强,译. 上海:上海科技教育出版社, 2013.

15 Weinberg S. Einstein's mistakes. Physics Today, 2005, 58(11):31.

16 温伯格.我为什么对量子力学不满意.(2016-11-23)[2021- 02-18]. https://huanqiukexue.com/a/qianyan/tianwen__wuli/2016/1123/26804.html.

17 Weinberg S. Lectures on Quantum Mechanics (2nd Ed). New York:Cambridge University Press, 2015.

18 Griffiths R B. Consistent histories and the interpretation of quantum mechanics. Journal of Statistical Physics, 1984, 36(1/2):219-272.

19 Griffiths R B. Consistent Quantum Theory. New York:Cambridge University Press, 2003.

20 Gell-Mann M, Hartle J B. Quantum Mechanics in the Light of Quantum Cosmology. Reading:Addison-Wesley, 1990.

21 Gell-Mann M, Hartle J B. Classical equations for quantum systems. Physical Review D, 1993, 47(8):3345-3382.

22 Zurek W H. Decoherence, Einselection and the quantum origin of the classical. Reviews of Modern Physics, 2003, 75(3):715- 775.

23 Zurek W H. Pointer basis of quantum apparatus-into what mixture does the wave packet collapse. Physical Review D, 1981, 24(6):1516-1525.

24 Ollivier H, Poulin D, Zurek W H. Objective properties from subjective quantum states:Environment as a witness. Physical Review Letters, 2004, 93(22):220401.

25 Hepp K. Quantum theory of measurement and macroscopic observables. Helvetica Physica Acta, 1972, 45:237-248.

26 Bell J S. On Wave Packet Reduction in the Coleman-Hepp Model. Helvetica Physica Acta, 1975, 48:93-98.

27 Namiki M, Pascazio S. Wave-function collapse by measurement and its simulation. Physical Review A, 1991, 44(1):39-53.

28 Nakazato H, Pascazio S. Solvable dynamical model for a quantum measurement process. Physical Review Letters, 1993, 70(1):1-4.

29 Zeh H D. On the interpretation of measurement in quantum theory. Foundations of Physics, 1970, 1(1):69-76.

30 Joos E, Zeh H D. The emergence of classical properties through interaction with the environment. Zeitschrift Für Physik B Condensed Matter, 1985, 59(2):223-243.

31 Joos E, Zeh H D, Kiefer C, et al. Decoherence and the Appearance of a Classical World in Quantum Theory. Berlin:Springer Berlin Heidelberg, 2003.

32 Sun C P. Quantum dynamical model for wave function reduction in classical and macroscopic limits. Physical Review A, 1993, 48(2):898-906.

33 Sun C P, Yi X X, Liu X J. Quantum dynamical approach of wavefunction collapse in measurement process and its application to quantum zeno effect. Fortschritte der PhysikProgress of Physics, 1995, 43(7):585-612.

34 Xu D Z, Ai Q, Sun C P. Dispersive-coupling-based quantum Zeno effect in a cavity-QED system. Physical Review A, 2011, 83(2):022107.

35 Ai Q, Xu D Z, Yi S, et al. Quantum anti-Zeno effect without wave function reduction. Scientific Reports, 2013, 3:1752.

36 Harrington P M, Monroe J T, Murch K W. Quantum Zeno effects from measurement controlled qubit-bath interactions. Physical Review Letters, 2017, 118:240401.

37 Zheng W Q, Xu D Z, Peng X H, et al. Experimental demonstration of the quantum Zeno effect in NMR with entanglement-based measurements. Physical Review A, 2013, 87(3):032112.

38 Li S W, Cai C Y, Liu X F, et al. Objectivity of quantum measurement in many-observer world. Foundations of Physics, 2018, 48(6):654-667.

39 Tipler F J. Quantum nonlocality does not exist. PNAS, 2014, 111(31):11281-11286.

40 波普尔.科学发现的逻辑.查汝强,邱仁宗,万木春,译.杭州:中国美术学院出版社, 2008.

41 波普尔.科学发现的逻辑后记.李本正,刘国柱,译.杭州:中国美术学院出版社, 2014.

42 波普尔.客观的知识:一个进化论的研究.杭州:中国美术学院出版社, 2003.

43 波普尔.猜想与反驳:科学知识的增长.杭州:中国美术学院出版社, 2010.

44 波普尔.实在论与科学的目标.杭州:中国美术学院出版社, 2008.

45 Everett H. "Relative State" Formulation of quantum mechanics. Reviews of Modern Physics, 1957, 29(3):454-462.

46 DeWitt B, Graham N. The Many-Worlds Interpretation of Quantum Mechanics. Princeton:Princeton University Press, 1973.

47 Northey M, Mckibbin J. Many Worlds:Everett, Quantum Theory,&Reality (Reprint Edition). New York:Oxford University Press, 2012.

48 Wallace D. The Emergent Multiverse:Quantum Theory according to the Everett Interpretation Reprint Edition. New York:Oxford University Press, 2014.

49 Byrne P. The Many Worlds of Hugh Everett III:Multiple Universes, Mutual Assured Destruction, and the Meltdown of a Nuclear Family. New York:Oxford University Press, 2010.

50 Lehner C. The Everett Interpretation of Quantum Mechanics:Collected Works 1955-1980 with Commentary. Princeton:Princeton University Press, 2012.

51 Bohm D. A Suggested interpretation of the quantum theory in terms of "hidden" variables. I. Physical Review, 1952, 85(2):166-179.

52 Bohm D. A suggested interpretation of the quantum theory in terms of "hidden" variables. II. Physical Review, 1952, 85(2):180-193.

53 Peres A. Popper's experiment and the Copenhagen interpretation. Studies in History and Philosophy of Modern Physics, 2002, 33(1):23-24.

54 波普尔.波普尔自传:无尽的探索.赵月瑟,译.北京:中央编译出版社, 2009.

55 Brune M, Hagley E, Dreyer J, et al. Observing the progressive decoherence of the"meter"in a quantum measurement. Physical Review Letters, 1996, 77(24):4887-4890.

56 白春礼.架构科学家与哲学家的思想桥梁,为人类科技事业贡献新智慧.中国科学院院刊, 2021, 36(1):3-9.

57 朱菁.哲学能够成为科技创新的"助产士"吗?.中国科学院院刊, 2021, 36(1):10-16.

58 刘闯,朱科夫.国际哲学与科学交叉学科研究进展评述.中国科学院院刊, 2021, 36(1):17-27.

59 郝刘祥.哲学与物理学相遇在量子世界.中国科学院院刊, 2021, 36(1):28-35.