Bulletin of Chinese Academy of Sciences (Chinese Version)


coastal wetland, carbon (C) neutrality, C sequestration, blue carbon, mangrove, salt marsh, tidal flat, restoration

Document Type

Technical Roadmap and Strategic Thinking of Ocean Negative Emissions Aiming Carbon Neutrality


Coastal wetlands are the main body of the coastal "blue carbon (C)" ecosystem, and their "blue C" and ecosystem service function are important ocean-based climate change governance methods, which is a "nature-based solution". Chinese coastal wetlands are dominated by salt marshes, with little area of mangroves, while the area of unvegetated tidal flats is large. According to conservative estimation, the current C sequestration of coastal wetlands through sediment burial in China reaches to 0.97 Tg C·a-1, and would increase to 1.82-3.64 Tg C·a-1 at the end of this century. To achieve the commitment of "C neutrality" in 2060, China should strengthen scientific research on coastal wetlands, protect the integrity of the structure and function of the existing coastal wetland ecosystems, stop destructive coastal wetlands development activities, and actively and steadily promote the ecological restoration of coastal wetlands, restore and enhance its "blue C" function, and benefit from C sink gains while protecting the nature.

First page


Last Page





Bulletin of Chinese Academy of Sciences


1 Bonan G B. Forests and climate change:Forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320:1444- 1449.

2 McLeod E, Chmura G L, Bouillon S, et al. A blueprint for blue carbon:Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 2011, 9(10):552-560.

3 IPCC. Climate Change 2014:Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva:IPCC, 2014.

4 唐剑武,叶属峰,陈雪初,等.海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用.中国科学:地球科学, 2018, 48(6):661-670.

5 Blue future:Coastal wetlands can have a crucial role in the fight against climate change. Nature, 2016, 529:255-256.

6 Lovelock C E, Duarte C M. Dimensions of blue carbon and emerging perspectives. Biology Letters, 2019, 15(3):20180781.

7 Davis J L, Currin C A, O'Brien C, et al. Living shorelines:Coastal resilience with a Blue Carbon benefit. PLoS One, 2015, 10(11):e0142595.

8 章海波,骆永明,刘兴华,等.海岸带蓝碳研究及其展望.中国科学:地球科学, 2015, 45(11):1641-1648.

9 张瑶,赵美训,崔球,等.近海生态系统碳汇过程、调控机制及增汇模式.中国科学:地球科学, 2017, 47(4):438- 449.

10 Wang F M, Kroeger K D, Gonneea M E, et al. Water salinity and inundation control soil carbon decomposition during salt marsh restoration:An incubation experiment. Ecology and Evolution, 2019, 9(4):1911-1921.

11 陈雪初,高如峰,黄晓琛,等.欧美国家盐沼湿地生态恢复的基本观点、技术手段与工程实践进展.海洋环境科学, 2016, 35(3):467-472.

12 Bouillon S, Borges A V, Castañeda-Moya E, et al. Mangrove production and carbon sinks:A revision of global budget estimates. Global Biogeochemical Cycles, 2008, 22(2):GB2013.

13 Bunting P, Rosenqvist A, Lucas R, et al. The global mangrove watch-A new 2010 global baseline of mangrove extent. Remote Sensing, 2018, 10(10):1669.

14 McOwen C J, Weatherdon L V, Bochove J V, et al. A global map of saltmarshes. Biodiversity Data Journal, 2017,(5):e11764.

15 Wang F M, Sanders C J, Santos I R, et al. Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review, 2021, DOI:10.1093/nsr/nwaa1296.

16 Wang Z A, Kroeger K D, Ganju N K, et al. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnology and Oceanography, 2016, 61(5):1916-1931.

17 Howard J, Sutton-Grier A, Herr D, et al. Clarifying the role of coastal and marine systems in climate mitigation. Frontiers in Ecology and the Environment, 2017, 15(1):42-50.

18 Jiao N Z, Wang H, Xu G H, et al. Blue carbon on the rise:Challenges and opportunities. National Science Review, 2018, 5(4):464-468.

19 Macreadie P I, Anton A, Raven J A, et al. The future of Blue Carbon science. Nature Communications, 2019, 10(1):3998.

20 Rogers K, Macreadie P I, Kelleway J J, et al. Blue carbon in coastal landscapes:A spatial framework for assessment of stocks and additionality. Sustainability Science, 2019, 14(2):453-467.

21 Kirwan M L, Megonigal J P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 2013, 504:53-60.

22 Kirwan M L, Mudd S M. Response of salt-marsh carbon accumulation to climate change. Nature, 2012, 489:550-553.

23 Gao Y, Yu G R, Yang T T, et al. New insight into global blue carbon estimation under human activity in land-sea interaction area:A case study of China. Earth-Science Reviews, 2016, 159:36-46.

24 Wang F M, Lu X L, Sanders C J, et al. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications, 2019, 10:5434.

25 焦念志,刘纪化,石拓,等.实施海洋负排放践行碳中和战略.中国科学:地球科学, 2021, 51:1-14.

26 Macreadie P I, Nielsen D A, Kelleway J J, et al. Can we manage coastal ecosystems to sequester more blue carbon?. Frontiers in Ecology and the Environment, 2017, 15(4):206- 213.

27 王秀君,章海波,韩广轩.中国海岸带及近海碳循环与蓝碳潜力.中国科学院院刊, 2016, 31(10):1218-1225.

28 Gedan K B, Kirwan M L, Wolanski E, et al. The present and future role of coastal wetland vegetation in protecting shorelines:Answering recent challenges to the paradigm. Climatic Change, 2011, 106(1):7-29.

29 Emery H E, Fulweiler R W. Incomplete tidal restoration may lead to persistent high CH4 emission. Ecosphere, 2017, 8(12):e01968.

30 Kroeger K D, Crooks S, Moseman-Valtierra S, et al. Restoring tides to reduce methane emissions in impounded wetlands:A new and potent Blue Carbon climate change intervention. Scientific Reports, 2017, 7:11914.

31 Wang F M, Eagle M, Kroeger K D, et al. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes. Science of the Total Environment, 2021, 750:141566.

32 Drexler J Z, Krauss K W, Sasser M C, et al. A long-term comparison of carbon sequestration rates in impounded and naturally tidal freshwater marshes along the Lower Waccamaw River, South Carolina. Wetlands, 2013, 33(5):965-974.

33 Spencer T, Schuerch M, Nicholls R J, et al. Global coastal wetland change under sea-level rise and related stresses:The DIVA Wetland Change Model. Global and Planetary Change, 2016, 139:15-30.

34 Deegan L A, Johnson D S, Warren R S, et al. Coastal eutrophication as a driver of salt marsh loss. Nature, 2012, 490:388-392.

35 Kirwan M L, Guntenspergen G R, D'Alpaos A, et al. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 2010, 37(23):L23401.

36 Morris J T, Sundberg K, Hopkinson C S. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography, 2013, 26(3):78-84.

37 周晨昊,毛覃愉,徐晓,等.中国海岸带蓝碳生态系统碳汇潜力的初步分析.中国科学:生命科学, 2016, 46(4):475- 486.

38 叶思源.湿地:地球之肾生命之舟.北京:科学出版社, 2021.

39 Mao D H, Wang Z M, Du B J, et al. National wetland mapping in China:A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164:11-25.

40 解雪峰,孙晓敏,吴涛,等.互花米草入侵对滨海湿地生态系统的影响研究进展.应用生态学报, 2020, 31(6):2119- 2128.

41 Mao D H, Liu M Y, Wang Z M, et al. Rapid invasion of Spartina alterniflora in the coastal zone of Mainland China:Spatiotemporal patterns and human prevention. Sensors, 2019, 19(10):2308.

42 Fu C C, Li Y, Zeng L, et al. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Global Change Biology, 2021, 27(1):202-214.

43 范航清,王文卿.中国红树林保育的若干重要问题.厦门大学学报(自然科学版), 2017, 56(3):323-330.

44 廖宝文,张乔民.中国红树林的分布、面积和树种组成.湿地科学, 2014, 12(4):435-440.

45 Murray N J, Phinn S R, DeWitt M, et al. The global distribution and trajectory of tidal flats. Nature, 2019, 565:222-225.

46 Lin W J, Wu J H, Lin H J. Contribution of unvegetated tidal flats to coastal carbon flux. Global Change Biology, 2020, 26(6):3443-3454.

47 Xia S P, Wang W Q, Song Z L, et al. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Global Change Biology, 2021, DOI:10.1111/gcb.15516.

48 Wang X X, Xiao X M, Zou Z H, et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163:312-326.

49 Wang X X, Xiao X M, Zou Z H, et al. Tracking annual changes of coastal tidal Flats in China during 1986-2016 through analyses of Landsat images with Google Earth Engine. Remote Sensing of Environment, 2020, 238:110987.

50 Jia M M, Wang Z M, Mao D H, et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment, 2021, 255:112285.

51 Xiong Y M, Liao B W, Wang F M. Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments. Marine Pollution Bulletin, 2018, 131:378-385.

52 Li H, Yin Y, Shi Y, et al. Micromorphology and contemporary sedimentation rate of tidal flats in Rudong, Jiangsu Province. Journal of Palaeogeography, 2011, 13(2):150-160.

53 Liu Z Y, Pan S M, Liu X Y, et al. Distribution of 137Cs and 210Pb in sediments of tidal flats in north Jiangsu Province. Journal of Geographical Sciences, 2010, 20(1):91-108.

54 Zhang Q, Wen X, Song C, et al. The measurement and study on sedimentation rate in mangove tidal flats. Tropical Oceanology, 1996, 15(4):57-62.

55 Li B, Liao C Z, Zhang X D, et al. Spartina alterniflora invasions in the Yangtze River estuary, China:An overview of current status and ecosystem effects. Ecological Engineering, 2009, 35(4):511-520.

56 Liao C Z, Luo Y Q, Jiang L F, et al. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze estuary, China. Ecosystems, 2007, 10(8):1351-1361.

57 黄梅,葛晨东,左平,等.米草引种对潮滩沉积物有机质的贡献及碳埋藏的影响.南京大学学报(自然科学), 2018, 54(3):655-664.

58 Jiao N Z, Tang K, Cai H Y, et al. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nature Reviews Microbiology, 2011, 9(1):75.

59 焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应.中国科学:地球科学, 2013, 43(1):1-18.

60 刘纪化,张飞,焦念志.陆海统筹研发碳汇.科学通报, 2015, 60(35):3399-3405.

61 Schuerch M, Spencer T, Temmerman S, et al. Future response of global coastal wetlands to sea-level rise. Nature, 2018, 561:231-234