•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

wildlife infectious disease, climate change, human activity, bio-safety, eco-safety

Document Type

Strategy & Policy Decision Research

Abstract

Recently, wildlife infectious diseases have become a more and more serious problem in the world which imposes a big threat to bio-safety and eco-safety of worldwide. Accelerated climate change and human activities are key driving forces in causing more frequent occurrences of wildlife infectious diseases. Climate change could create favorable conditions for large-scale outbreak or invasion of wildlife infectious diseases by altering range shift or habitat of wildlife infectious diseases or their host/vectors. Human disturbance increases interspecific transmission of pathogens across people, wild and domestic animals, as well as their spread velocity facilitated by the modern transportation systems, and then occurrence of zoonotic diseases. In order to deal with the great challenge of more serious wildlife infectious diseases, it is necessary to strengthen the national monitoring and prevention system of wildlife infectious diseases in China, to promote the capacity for research, monitoring and forecasting, intervention and control on wildlife infectious diseases, so as to serve the bio-safety and eco-safety strategy of China.

First page

188

Last Page

198

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

Original Submission Date

2021-01-26

References

[1] 曾岩, 平晓鸽, 魏辅文. "野生动物"的概念框架和术语定义. 生物多样性, 2020, 28(5): 541-549.

[2] 夏咸柱, 高宏伟, 华育平. 野生动物疫病学. 北京: 高等教育出版社, 2011.

[3] 何宏轩, 王承民, 秦建华, 等. 野生动物疫病学概论. 北京: 科学出版社, 2014.

[4] Johnson C K, Hitchens P L, Pandit P S, et al. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proceedings of the Royal Society B: Biological Sciences, 2020, 287: 20192736. DOI:10.1098/rspb.2019.2736

[5] Xu L, Liu Q, Stige L C, et al. Nonlinear effect of climate on plague during the third pandemic in China. PNAS, 2011, 108: 10214-10219. DOI:10.1073/pnas.1019486108

[6] Xu L, Stige L C, Leirs H, et al. Historical and genomic data reveal the influencing factors on global transmission velocity of plague during the Third Pandemic. PNAS, 2019, 116: 11833-11838.

[7] Morelli G, Song Y, Mazzoni C J, et al. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nature Genetics, 2010, 42: 1140-1143. DOI:10.1038/ng.705

[8] Spyrou M A, Tukhbatova R I, Wang C C, et al. Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nature Communications, 2018, 9: 2234. DOI:10.1038/s41467-018-04550-9

[9] Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARSlike coronaviruses. Science, 2005, 310: 676-679. DOI:10.1126/science.1118391

[10] Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579: 270-273. DOI:10.1038/s41586-020-2012-7

[11] Liu J, Xiao H, Lei F, et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science, 2005, 309: 1206. DOI:10.1126/science.1115273

[12] Olsen B, Munster V J, Wallensten A, et al. Global patterns of influenza a virus in wild birds. Science, 2006, 312: 384-388. DOI:10.1126/science.1122438

[13] Li Y, Liu L, Zhang Y, et al. New avian influenza virus (H5N1) in wild birds, Qinghai, China. Emerging Infectious Diseases, 2011, 17: 265-267. DOI:10.3201/eid1702.100732

[14] Zhang Y, Zhang Q, Kong H, et al. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science, 2013, 340: 1459-1463. DOI:10.1126/science.1229455

[15] Zhang Q, Guan Y, Yang H. ENSO amplitude change in observation and coupled models. Advances in Atmospheric Sciences, 2008, 25: 361-366. DOI:10.1007/s00376-008-0361-5

[16] 张知彬. 生物灾害可能与厄尔尼诺现象有关//走向21世纪的中国生态学. 北京: 中国科学技术出版社, 1995: 232-233.

[17] 张知彬, 王祖望. ENSO现象与生物灾害. 中国科学院院刊, 1998, 13(1): 34-38. DOI:10.3969/j.issn.1000-3045.1998.01.008

[18] 张知彬. 厄尔尼诺与大尺度、超长期生物灾害预警. 科学, 1999, 51(1): 34-36.

[19] Zhang Z B. Relationship between El Niño/South Oscillation (ENSO) and population outbreaks of some lemmings and voles in Europe. Chinese Science Bulletin, 2001, 46: 1067-1073. DOI:10.1007/BF02900679

[20] Zhang Z, Pech R, Davis S, et al. Extrinsic and intrinsic factors determine the eruptive dynamics of Brandt's voles Microtus brandti in Inner Mongolia, China. Oikos, 2003, 100: 299-310. DOI:10.1034/j.1600-0706.2003.11810.x

[21] Zhang Z, Li Z, Tao Y, et al. Relationship between increase rate of human plague in China and global climate index as revealed by cross-spectral and cross-wavelet analyses. Integrative Zoology, 2007, 2: 144-153. DOI:10.1111/j.1749-4877.2007.00061.x

[22] Zhang Z, Xu L, Guo C, et al. Effect of ENSO-driven precipitation on population irruptions of the Yangtze vole Microtus fortis calamorum in the Dongting Lake region of China. Integrative Zoology, 2010, 5: 176-184. DOI:10.1111/j.1749-4877.2010.00199.x

[23] Jiang G, Zhao T, Liu J, et al. Effects of ENSO-linked climate and vegetation on population dynamics of sympatric rodent species in semiarid grasslands of Inner Mongolia, China. Canadian Journal of Zoology, 2011, 89: 678-691. DOI:10.1139/z11-048

[24] Tian H, Yu P, Cazelles B, et al. Interannual cycles of Hantaan virus outbreaks at the human-animal interface in Central China are controlled by temperature and rainfall. PNAS, 2017, 114: 8041-8046. DOI:10.1073/pnas.1701777114

[25] Hjelle B, Glass G E. Outbreak of Hantavirus infection in the Four Corners region of the United States in the wake of the 1997-1998 El Nino-southern oscillation. Journal Of Infectious Diseases, 2000, 181: 1569-1573. DOI:10.1086/315467

[26] Letnic M, Dickman C R. Boom means bust: interactions between the El Niño/Southern Oscillation (ENSO), rainfall and the processes threatening mammal species in arid Australia. Biodiversity & Conservation, 2006, 15: 3847-3880. DOI:10.1007/s10531-005-0601-2

[27] Lima M, Marquet P A, Jaksic F M. El Niño events, precipitation patterns, and rodent outbreaks are statistically associated in semiarid Chile. Ecography, 1999, 22: 213-218. DOI:10.1111/j.1600-0587.1999.tb00470.x

[28] Xu L, Stige L C, Chan K S, et al. Climate variation drives dengue dynamics. PNAS, 2017, 114: 113-118. DOI:10.1073/pnas.1618558114

[29] Lowen A C, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathogens, 2007, 3(10): 1470-1476.

[30] Cheng C, Li J, Liu W, et al. Modeling analysis revealed the distinct global transmission patterns of influenza A viruses and their influencing factors. Integrative Zoology, 2020. DOI:10.1111/1749-4877.12469

[31] National Academies of Sciences. Rapid Expert Consultation on SARS-CoV-2 Survival in Relation to Temperature and Humidity and Potential for Seasonality for the COVID-19 Pandemic (April 7, 2020). Washington DC: The National Academies Press, 2020: 8.

[32] Qi H, Xiao S, Shi R, et al. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Science of the Total Environment, 2020, 728: 138778. DOI:10.1016/j.scitotenv.2020.138778

[33] Wan X, Cheng C, Zhang Z. Early transmission of COVID-19 has an optimal temperature but late transmission decreases in warm climate. medRxiv, 2020. DOI:10.1101/2020.05.14.20102459

[34] Wang J, Tang K, Feng K, et al. High temperature and high humidity ueduce the transmission of COVID-19. SSRN Electronic Journal, 2020. DOI:10.2139/ssrn.3551767

[35] Liu Q, Liu X, Cirendun Z, et al. Mosquitoes established in Lhasa City, Tibet, China. Parasites & Vectors, 2013, 6: 224.

[36] 张美文, 郭聪, 王勇. 我国黄胸鼠的研究现状. 动物学研究, 2000, 21(6): 487-497. DOI:10.3321/j.issn:0254-5853.2000.06.013

[37] Tian H, Yan C, Xu L, et al. Scale-dependent climatic drivers of human epidemics in ancient China. PNAS, 2017, 114: 12970-12975. DOI:10.1073/pnas.1706470114

[38] Zhang Z, Yan C, Krebs C J, et al. Ecological non-monotonicity and its effects on complexity and stability of populations, communities and ecosystems. Ecological Modelling, 2015, 312: 374-384. DOI:10.1016/j.ecolmodel.2015.06.004

[39] Hechinger R F, Lafferty K D. Host diversity begets parasite diversity: Bird final hosts and Trematodes in snail intermediate hosts. Proceedings of Biological Sciences, 2005, 272: 1059-1066.

[40] Poulin R. Parasite biodiversity revisited: Frontiers and constraints. International Journal for Parasitology, 2014, 44: 581-589. DOI:10.1016/j.ijpara.2014.02.003

[41] Johnson P T J, Wood C L, Joseph M B, et al. Habitat heterogeneity drives the host-diversity-begets-parasitediversity relationship: Evidence from experimental and field studies. Ecology Letters, 2016, 19: 752-761. DOI:10.1111/ele.12609

[42] Patz J A, Daszak P, Tabor G M, et al. Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environmental Health Perspectives, 2004, 112: 1092-1098. DOI:10.1289/ehp.6877

[43] Dirzo R, Young H S, Galetti M, et al. Defaunation in the Anthropocene. Science, 2014, 345: 401. DOI:10.1126/science.1251817

[44] Loh E H, Zambrana-Torrelio C, Olival K J, et al. Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector-Borne and Zoonotic Diseases, 2015, 15: 432-437. DOI:10.1089/vbz.2013.1563

[45] Dirzo R, Young H S, Galetti M, et al. Defaunation in the anthropocene. Science, 2014, 345: 401-406. DOI:10.1126/science.1251817

[46] LoGiudice K, Ostfeld R S, Schmidt K A, et al. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. PNAS, 2003, 100: 567-571. DOI:10.1073/pnas.0233733100

[47] Keesing F, Holt R D, Ostfeld R S. Effects of species diversity on disease risk. Ecology Letters, 2006, 9: 485-498. DOI:10.1111/j.1461-0248.2006.00885.x

[48] Keesing F, Belden L K, Daszak P, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 2010, 468: 647-652. DOI:10.1038/nature09575

[49] Civitello D J, Cohen J, Fatima H, et al. Biodiversity inhibits parasites: Broad evidence for the dilution effect. PNAS, 2015, 112: 8667-8671. DOI:10.1073/pnas.1506279112

[50] Randolph S E, Dobson A D. Pangloss revisited: A critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology, 2012, 139: 847-863. DOI:10.1017/S0031182012000200

[51] Salkeld D J, Padgett K A, Jones J H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecology Letters, 2013, 16: 679-686. DOI:10.1111/ele.12101

[52] Halliday F W, Rohr J R. Measuring the shape of the biodiversity-disease relationship across systems reveals new findings and key gaps. Nature Communications, 2019, 10: 5032. DOI:10.1038/s41467-019-13049-w

[53] Sun Z, Xu L, Schmid B V, et al. Human plague system associated with rodent diversity and other environmental factors. Royal Society Open Science, 2019, 6: 190216. DOI:10.1098/rsos.190216

[54] Young H S, McCauley D J, Galetti M, et al. Patterns, Causes, and consequences of anthropocene defaunation. Annual Review of Ecology, Evolution, and Systematics, 2016, 47: 333-358. DOI:10.1146/annurev-ecolsys-112414-054142

[55] Krammer F, Smith G J D, Fouchier R A M, et al. Influenza. Nature Reviews Disease Primers, 2018, 4(1): 1-21.

[56] Xu L, Stige L C, Kausrud K L, et al. Wet climate and transportation routes accelerate spread of human plague. Proceedings of Biological Sciences, 2014, 281: 20133159.

[57] Morand S, McIntyre K M, Baylis M. Domesticated animals and human infectious diseases of zoonotic origins: Domestication time matters. Infection, Genetics and Evolution, 2014, 24: 76-81. DOI:10.1016/j.meegid.2014.02.013

[58] Vijaykrishna D, Poon L L, Zhu H C, et al. Reassortment of pandemic H1N1/2009 influenza A virus in swine. Science, 2010, 328: 1529. DOI:10.1126/science.1189132

[59] Enserink M. Coronavirus rips through Dutch mink farms, triggering culls. Science, 2020, 368: 1169. DOI:10.1126/science.368.6496.1169

[60] Shuai L, Zhong G, Yuan Q, et al. Replication, pathogenicity, and transmission of SARS-CoV-2 in minks. National Science Review, 2020. DOI:10.1093/nsr/nwaa291

[61] 裴洁, 胡智斌, 谢军, 等. 湖北省神农架林区野猪非洲猪瘟疫情的紧急流行病学调查. 中国动物检疫, 2021, 38(1): 1-7.

[62] 赵鹏鹏, 韩学利, 沈洁娜, 等. 大熊猫犬瘟热的诊治及预防对策. 动物医学进展, 2017, 38(9): 115-118. DOI:10.3969/j.issn.1007-5038.2017.09.023

[63] 曾娟, 韩立亮, 郭永旺, 等. 基于大数据的物联网智能监测系统在农区鼠害监测中的应用效果初报. 中国植保导刊, 2019, 39(7): 28-35.

[64] 王天明, 冯利民, 杨海涛, 等. 东北虎豹生物多样性红外相机监测平台概述. 生物多样性, 2020, 28(9): 1059-1066.

[65] He G, Yang H, Pan R, et al. Using unmanned aerial vehicles with thermal-image acquisition cameras for animal surveys: A case study on the Sichuan snub-nosed monkey in the Qinling Mountains. Integrative Zoology, 2020, 15(1): 79-86. DOI:10.1111/1749-4877.12410

[66] Shi C, Liu D, Cui Y, et al. Amur tiger stripes: Individual identification based on deep convolutional neural network. Integrative Zoology, 2020, 15(6): 461-470. DOI:10.1111/1749-4877.12453

[67] 肖治术, 李学友, 向左甫, 等. 中国兽类多样性监测网的建设规划与进展. 生物多样性, 2017, 25(3): 237-245.

[68] 李晟. 中国野生动物红外相机监测网络建设进展与展望. 生物多样性, 2020, 28(9): 1045-1048.

[69] 任钟毓, 王博宇, 谢屹, 等. 我国国家级陆生野生动物疫源疫病监测站体系建设现状及发展对策研究. 林业经济, 2018, 40(1): 98-101.

Share

COinS