•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

carbon neutralization, negative emission, marine carbon sink, microbial carbon pump

Document Type

Strategy & Policy Decision Research

Abstract

Carbon neutrality is the right means to cope with global warming. The basic approaches to achieve carbon neutralization include reducing CO2 emissions to the atmosphere and increasing carbon sinks or negative emissions (absorption of atmospheric CO2). As a developing country and a big emitter, China should try its best to increase carbon sinks while reducing emissions as much as possible. The ocean is the largest active carbon pool on Earth, with great potentials for carbon negative emission. We have established marine carbon sequestration theory, which has laid solid foundation for negative emission and set up the linkage between science and policy. At present, China should take the lead of the international program on the ocean negative carbon emission (ONCE), and put it into practice through top design, timely layout, and development of ONCE technology, and then establish ONCE protocols and standards for carbon trade.

First page

179

Last Page

187

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

Original Submission Date

2021-01-31

References

[1] 习近平在第七十五届联合国大会一般性辩论上发表重要讲话. 人民日报, 2020-09-23(01).

[2] 李嘉宝. 积极践行低碳排放深度参与国际合作中国为全球环境治理作贡献. 人民日报海外版, 2020-11-24(10).

[3] National Academies of Sciences, Engineering, Medicine. Negative Emissions Technologies and Reliable Sequestration. Pittsburgh: National Academies Press, 2019.

[4] 张叶生, 王珊. 耕地现状和人口增长对粮食安全的影响分析. 农业部管理干部学院学报, 2011, (1): 35-39.

[5] Friedlingstein P, Michael O S, Matthew W J, et al. Global carbon budget 2020. Earth System Science Data, 2020, 12(4): 3269-3340. DOI:10.5194/essd-12-3269-2020

[6] Boyd W P, Claustre H, Levy M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 2019, 568: 327-335. DOI:10.1038/s41586-019-1098-2

[7] Jiao N. Carbon pools and fluxes in the China Seas and adjacent oceans. Science China Earth Sciences, 2018, 61(11): 5-33.

[8] Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nature Reviews Microbiology, 2010, 8(8): 593. DOI:10.1038/nrmicro2386

[9] Barber R T. Dissolved organic carbon from deep waters resists microbial oxidation. Nature, 1968, 220: 274-275. DOI:10.1038/220274a0

[10] Stone R. The invisible hand behind a vast carbon reservoir. Science, 2010, 328: 1476-1477. DOI:10.1126/science.328.5985.1476

[11] Regnier P, Friedlingstein P, Ciais P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 2013, 6(8): 597-607. DOI:10.1038/ngeo1830

[12] Bauer J E, Cai W J, Raymond P A, et al. The changing carbon cycle of the coastal ocean. Nature, 2013, 504: 61-70. DOI:10.1038/nature12857

[13] Laruelle G, Durr H, Slomp C, et al. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letters, 2010. DOI:10.1029/2010GL043691

[14] Jiao N, Tang K, Cai H, et al. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nature Review Microbiology, 2011, 9: 75.

[15] Chen C T A, Borges A V. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Research, 2009, 59(8): 578-590.

[16] Jiao N, Robinson C, Azam F, et al. Mechanisms of microbial carbon sequestration in the ocean-future research directions. Biogeosciences Discussions, 2014, 11(19): 5285-5306. DOI:10.5194/bg-11-5285-2014

[17] Druffel E R M, Williams P M, Bauer J E, et al. Cycling of dissolved and particulate organic matter in the open ocean. Journal of Geophysical Research Oceans, 1992, 97(10): 15639-15659.

[18] Taylor P G, Townsend A R. Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature, 2010, 464: 1178-1181. DOI:10.1038/nature08985

[19] Rosemond A D, Benstead J P, Bumpers P M, et al. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science, 2015, 347: 1142-1145. DOI:10.1126/science.aaa1958

[20] Liu J, Jiao N, Tang K. An experimental study on the effects of nutrient enrichment on organic carbon persistence in the western Pacific oligotrophic gyre. Biogeosciences, 2014, 11(18): 5115-5122. DOI:10.5194/bg-11-5115-2014

[21] Rabalais N N, Díaz R J, Levin L A, et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 2010, 7(2): 585-619. DOI:10.5194/bg-7-585-2010

[22] Zhang Y. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. National Science Review, 2019, 6(4): 225-238.

[23] Jiao N, Liu J, Jiao F, et al. Microbes mediated comprehensive carbon sequestration for negative emission in the ocean. National Science Review, 2020. DOI:10.1093/nsr/nwaa171

[24] Jiao N, Wang H, Xu G, et al. Blue carbon on the rise: Challenges and opportunities. National Science Review, 2018, 5: 464-468. DOI:10.1093/nsr/nwy030

[25] Schrag D P, Higgins J A, MacDonald F A, et al. Authigenic carbonate and the history of the global carbon cycle. Science, 2013, 339: 540-543. DOI:10.1126/science.1229578

Share

COinS