Bulletin of Chinese Academy of Sciences (Chinese Version)


Earth’s tides, superconducting gravimeter, geodynamics, mass transfer, theory on deformation

Document Type

CAS Field Station


Since 1985, about 35-year high-precision gravity data have been being well accumulated and worldwide cooperation was effectively carried out. The unique international tidal gravity reference in Asia was established. The background noise model for low frequency in Chinese continent was constructed. A global experimental model and an accurate correction model in Chinese continent for gravity tides of the Earth were both constructed. The theoretical simulation of the effect of surface mass loading on gravity was improved. The signals related to the nearly diurnal resonance, Earth’s free oscillation and translational wobble of the Earth’s inner core were detected to investigate the physical parameters of the Earth’s deep interior. A theory which couples temperature into elastic deformation of a layered and self-gravitating spherical Earth was proposed. The above mentioned achievements would contribute to national precise surveying and mapping, global large-scale geodynamics and space techniques as roles of new instructions and/or references.

First page


Last Page





Bulletin of Chinese Academy of Sciences


[1] 徐建桥, 周江存, 罗少聪, 等. 武汉台重力长期变化特征研究. 科学通报, 2008, 53(5): 583-588. DOI:10.3321/j.issn:0023-074X.2008.05.014

[2] 许厚泽, 孙和平, 徐建桥, 等. 武汉国际重力潮汐基准研究. 中国科学D辑: 地球科学, 2000, 30(5): 549-553.

[3] Sun H P, Zhang H K, Xu J Q, et al. Influences of the Tibetan Plateau on tidal gravity detected by using SGs at Lhasa, Lijiang and Wuhan Stations in China. Terrestrial, Atmospheric and Oceanic Sciences, 2019, 30(1): 139-149. DOI:10.3319/TAO.2019.02.14.01

[4] Zhang M M, Xu J Q, Sun H P, et al. OSG-057 superconducting gravimeter noise levels in Lhasa (China). Terrestrial, Atmospheric and Oceanic Sciences, 2016, 27(6): 807-817. DOI:10.3319/TAO.2016.03.23.01(T)

[5] 张苗苗. 超导重力仪台站背景噪声水平评估及信号提取. 测绘学报, 2017, 46(4): 535-535.

[6] Xu J Q, Sun H P, Ducarme B. A global experimental model for gravity tides of the earth. Journal of Geodynamics, 2004, 38(3-5): 293-306. DOI:10.1016/j.jog.2004.07.003

[7] Mathews P M. Love numbers and gravimetric factor for diurnal tides. Journal of the Geodetic Society of Japan, 46(4): 231-236.

[8] Dehant V, Defraogme P, Wahr J M. Tides for a convective Earth. Journal of Geophysical Research, 1999, 104(B1): 1035-1058. DOI:10.1029/1998JB900051

[9] 周江存, 徐建桥, 孙和平. 中国大陆精密重力潮汐改正模型. 地球物理学报, 2009, 52(6): 1474-1482. DOI:10.3969/j.issn.0001-5733.2009.06.008

[10] 孙和平. 大气重力格林函数. 科学通报, 1997, 42(15): 1640-1646. DOI:10.3321/j.issn:0023-074X.1997.15.017

[11] Luo S C, Sun H P, Xu J Q. An investigation of the quasi 3-D atmospheric loading response on gravity-Implementation and evaluation. Journal of Geodynamics, 2009, 48(3-5): 366-370. DOI:10.1016/j.jog.2009.09.007

[12] 王继刚, 周江存. 沿海和岛屿重力海潮负荷改正模型--以马祖岛为例. 大地测量与地球动力学, 2020, 40(8): 73-77.

[13] 孙和平, Ducarme B, 许厚泽, 等. 基于全球超导重力仪观测研究海潮和固体潮模型. 中国科学D辑: 地球科学, 2005, 35(7): 649-657.

[14] Zhou J C, Sun H P, Xu J Q, et al. Estimation of local water storage change by space-and ground-based gravimetry. Journal of Applied Geophysics, 2016, 131: 23-28. DOI:10.1016/j.jappgeo.2016.05.007

[15] 贺前钱, 罗少聪, 孙和平, 等. 武汉九峰站地下水变化对重力场观测的影响. 地球物理学报, 2016, 59(8): 2765-2772.

[16] 孙和平, 崔小明, 徐建桥, 等. 超导重力技术在探讨核幔边界黏性特征中的初步应用. 地球物理学报, 2009, 52(3): 637-645.

[17] Sun H P, Jentzsch G, Xu J Q, et al. Earth's free core nutation determined using C032 superconducting gravimeter at station Wuhan/China. Journal of Geodynamics, 2004, 38(3-5): 451-460. DOI:10.1016/j.jog.2004.07.007

[18] Cui X M, Sun H P, Rosat S, et al. Investigation of the time variability of diurnal tides and resonant FCN period. Journal of Geodynamics, 2014, 79: 30-38. DOI:10.1016/j.jog.2014.05.003

[19] Cui X M, Sun H P, Xu J Q, et al. Detection of free core nutation resonance variation in Earth tide from global superconducting gravimeter observations. Earth Planet and Space, 2018, 70(1): 199. DOI:10.1186/s40623-018-0971-9

[20] Cui X M, Sun H P, Xu J Q, et al. Relationship between free core nutation and geomagnetic jerks. Journal of Geodesy, 2020, 94(4): 1-13. DOI:10.1007/s00190-020-01367-7

[21] 雷湘鄂, 许厚泽. 解算液核自由章动常数的三线频谱线法. 中国科学D辑: 地球科学, 2001, 31(9): 727-734.

[22] 雷湘鄂, 许厚泽, 孙和平. 利用超导重力观测资料检测地球自由振荡. 科学通报, 2002, 47(18): 1432-1436.

[23] 雷湘鄂, 孙和平, 许厚泽, 等. 苏门达腊大地震激发的地球自由振荡及其谱线分裂的检测与讨论. 中国科学D辑: 地球科学, 2007, 37(4): 504-511.

[24] Park J, Song T, Tromp J, et al. Earth's free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake. Science, 2005, 308: 1139-1144. DOI:10.1126/science.1112305

[25] Sun H P, Zhang M M, Xu J Q, et al. Reanalysis of background free oscillations using recent SG data. Terrestrial, Atmospheric and Oceanic Sciences, 2019, 30(6): 757-763. DOI:10.3319/TAO.2019.03.14.03

[26] Li H, Xu J Q, Chen X D, et al. Extracting Long-period surface waves and free oscillations using ambient noise recorded by global distributed superconducting gravimeters. Seismological Research Letters, 2020, 91(4): 2234-2246. DOI:10.1785/0220190166

[27] 徐建桥, 孙和平, 周江存. 内核平动三重谱线的实验探测. 科学通报, 2009, 54(22): 3483-3490.

[28] Sun H P, Xu J Q, Ducarme B. Detection of the translational oscillation of the earth's solid inner core based on the international SG observations. Chinese Science Bulletin, 2004, 49(11): 1165-1176. DOI:10.1360/03wd0242

[29] 廖彬彬, 徐建桥, 孙和平, 等. 利用谱元法计算SNREI地球的表面负荷变形. 地球物理学报, 2019, 62(7): 2382-2393.

[30] Zhou J, Pan E, Bevis M. 2019. A point dislocation in a layered, transversely isotropic and self-gravitating Earth. Part Ⅰ: Analytical dislocation Love numbers. Geophysical Journal International, 2019, 217(3): 1681-1705.