Bulletin of Chinese Academy of Sciences (Chinese Version)


biotechnology; black soil; quality; production capacity; green manure; straw decomposition; plant microbiome; microbial fertilizer

Document Type

S&T and Society


In the past 60 years, the highly-intensive and unreasonable farming of the black soil in Northeast China has brought a series of adverse consequences such as the reduction of organic matter, the serious imbalance of carbon and nitrogen, and the instability of microbiota, which seriously threaten China's food security and agricultural sustainable development. The decrease of organic matter content in black soil is the core issue in the degradation of black soil. Organisms are the source of all organic matter, and the dynamic balance of organic matter driven by organisms is the basis for maintaining the stability of farmland ecosystem and soil quality. However, the limitation of hydrothermal resources in Northeast China makes it difficult to realize the transformation of organism-driven soil organic matter, which restricts the improvement of black soil quality and the development of conservation tillage technology. Recently, the Chinese Academy of Sciences has launched the strategic priority program "Scientific and Technological Innovation Project for Black Soil Protection and Utilization (Black Soil Granary)", and set up the key task of "modern biological technology for improving the productivity and quality of black soil". Focusing on major scientific issues including the mechanism of soil organic matter dynamic balance driven by organisms such as green manure, and the biological mechanism of low-temperature decomposition of straw, the key task aims to develop revolutionary and disruptive biotechnologies to solve the bottleneck of transformation technology of black soil organic matter, hence to promote the benign balance of material circulations and ecological functions. This will provide important theoretical and key technical support for the improvement of productivity and quality of black soil.

First page


Last Page





Bulletin of Chinese Academy of Sciences

Original Submission Date



1 刘宝元, 张甘霖, 谢云, 等. 东北黑土区和东北典型黑土区的范围与划界. 科学通报, 2021, 66(1):96-106. 2 崔明, 张旭东,蔡强国, 等. 东北典型黑土区气候、地貌演化与黑土发育关系. 地理研究, 2008, 27(3):527-535. 3 Zhao Y C, Wang M Y, Hu S J, et al. Economics-and policydriven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. PNAS, 2018, 115(16):4045-4050. 4 杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化. 土壤学报, 2017, 54(5):1047-1056. 5 梁爱珍, 李禄军, 祝惠. 科技创新推进黑土地保护与利用, 齐力维护国家粮食安全——用好养好黑土地的对策建议. 中国科学院院刊, 2021, 36(5):557-564. 6 王旭东, 庄俊杰, 刘冰洋, 等. 秸秆还田条件下中国农田土壤有机碳含量变化及其影响因素的Meta分析. 中国农业大学学报, 2020, 25(8):12-24. 7 马想, 徐明岗, 赵惠丽, 等. 我国典型农田土壤中有机物料腐解特征及驱动因子. 中国农业科学, 2019, 52(9):1564-1573. 8 高星爱, 王鑫, 解娇, 等. 低温秸秆降解复合微生物菌剂的研究进展. 生物技术通报, 2020, 36(4):144-150. 9 Garsoux G, Lamotte J, Gerday C, et al. Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. The Biochemical Journal, 2004, 384(Pt 2):247-253. 10 Pauly M, Keegstra K. Physiology and metabolism ‘Tear down this wall’. Current Opinion in Plant Biology, 2008, 11(3):233-235. 11 Ding S Y, Liu Y S, Zeng Y N, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?. Science, 2012, 338:1055-1060. 12 Kang X, Kirui A, Dickwella Widanage M C, et al. Ligninpolysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nature Communications, 2019, 10:347. 13 Zhang B C, Gao Y H, Zhang L J, et al. The plant cell wall:Biosynthesis, construction, and functions. Journal of Integrative Plant Biology, 2021, 63:251-272. 14 Cao Y B, Wang X, Zhang X Y, et al. An electric field immobilizes heavy metals through promoting combination with humic substances during composting. Bioresource Technology, 2021, 330:124996. 15 时小可, 颉建明, 冯致, 等. 三种微生物菌剂对羊粪高温好氧堆肥的影响. 中国农学通报, 2015, 31(2):45-48. 16 宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018, 24(1):1-21. 17 杨世琦, 韩瑞芸, 刘晨峰. 省域尺度下畜禽粪便的农田消纳量及承载负荷研究. 中国农业大学学报, 2016, 21(7):142-151. 18 杨世琦, 韩瑞芸, 刘晨峰. 中国畜禽粪便磷的农田消纳量及承载负荷研究. 中国农学通报, 2016, 32(32):111-116. 19 Agyarko-Mintah E, Cowie A, van Zwieten L, et al. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Management, 2017, 61:129-137. 20 Bolan N S, Kunhikrishnan A, Choppala G K, et al. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Science of the Total Environment, 2012, 424:264-270. 21 Zhang J Y, Liu Y X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in fieldgrown rice. Nature Biotechnology, 2019, 37(6):676-684. 22 Trivedi P, Leach J E, Tringe S G, et al. Plant-microbiome interactions:From community assembly to plant health. Nature Reviews Microbiology, 2020, 18(11):607-621. 23 Ren B, Wang X T, Duan J B, et al. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science, 2019, 365:919-922. 24 Backer R, Rokem J S, Ilangumaran G, et al. Plant growthpromoting rhizobacteria:Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 2018, 9:1473. 25 Singh M, Singh D, Gupta A, et al. Plant growth promoting rhizobacteria:Application in biofertilizers and biocontrol of phytopathogens//Singh A K, Kumar A, Singh P K, Eds. PGPR Amelioration in Sustainable Agriculture. Holand:Woodhead Publishing, 2019:41-66. 26 Rodrı guez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 1999, 17:319-339. 27 Hiruma K, Gerlach N, Sacristán S, et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell, 2016, 165(2):464-474. 28 Tarafdar J C, Yadav R S, Meena S C. Comparative efficiency of acid phosphatase originated from plant and fungal sources. Journal of Soil Science and Plant Nutrition, 2001, 164(3):279-282. 29 Awasthi A. Field-specific microbial consortia are feasible:A response to Kaminsky et al. Trends in Biotechnology, 2019, 37:569-572. 30 Bashan Y, Puente M E, Rodriguez-Mendoza M N, et al. Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Applied and Environmental Microbiology, 1995, 61(5):1938-1945. 31 O'Callaghan M. Microbial inoculation of seed for improved crop performance:Issues and opportunities. Applied Microbiology and Biotechnology, 2016, 100(13):5729-5746. 32 曹卫东. 绿肥种质资源描述规范和数据标准. 北京:中国农业出版社, 2007. 33 樊志龙, 柴强, 曹卫东, 等. 绿肥在我国旱地农业生态系统中的服务功能及其应用. 应用生态学报, 2020, 31(4):1389-1402. 34 张久明, 宿庆瑞, 迟凤琴, 等. 黑龙江省绿肥作物生产利用现状及展望. 黑龙江农业科学, 2009, (6):152-154. 35 周艳春, 王志锋, 于洪柱, 等. 吉林省野生牧草种质资源的考察与搜集. 草业科学, 2011, 28(2):196-200. 36 张国发, 吴园园, 徐太海, 等. 田菁秸秆还田对松嫩平原盐碱土改良效果的研究. 大庆师范学院学报, 2018, 38(3):48-50. 37 姚荣江, 杨劲松, 刘广明. 东北地区盐碱土特征及其农业生物治理. 土壤, 2006, 38(3):256-262. 38 王晓玥, 蒋瑀霁, 隋跃宇, 等.田间条件下小麦和玉米秸秆腐解过程中微生物群落的变化——BIOLOG分析. 土壤学报, 2012, 49(5):1003-1011. 39 Sun B, Wang X Y, Wang F, et al. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Applied and Environmental Microbiology, 2013, 79(11):3327-3335. 40 刘宏伟. 绿肥作物还田后腐解规律及对土壤肥力与玉米产量的影响. 北京:中国农业科学院, 2011. 41 张媛媛. 绿肥腐解规律及玉米绿肥间种效益的研究. 哈尔滨:东北农业大学, 2011. 42 杨帆, 赵坤, 郭永霞, 等. 微生物促腐剂配施固氮蓝藻对水稻秸秆腐解的影响. 南方农业学报, 2019, 50(11):2421-2428. 43 Bakker P A H M, Pieterse C M J, de Jonge R, et al. The soilborne legacy. Cell, 2018, 172(6):1178-1180. 44 李沐慧, 王媛媛, 陈井生, 等. 2015年东北地区大豆田病害种类与危害程度调查研究. 大豆科学, 2016, 35(4):643-648. 45 李新, 张义. 东北玉米病虫害发生情况及原因分析. 经济技术协作信息, 2011, (7):77. 46 宋赛虎, 孟繁华, 郝艳, 等. 东北及黄淮海平原农产品产地土壤污染风险及防控对策. 环境科学研究, 2018, 31(10):1662-1668. 47 冯慧敏, 何红波, 武叶叶, 等. 原位土壤中乙草胺降解迁移规律研究. 土壤通报, 2008, 39(6):1414-1418. 48 国家自然科学基金委员会, 中国科学院. 中国学科发展战略·土壤生物学. 北京:科学出版社, 2016.