Bulletin of Chinese Academy of Sciences (Chinese Version)


gene editing technology CRISPR; ethical governance

Document Type

Governance Strategy on Science and Technology Ethics


Gene editing technology has been one of the breakthrough technologies for life science research. With the application in biomedical research, healthcare, food and agriculture field, related ethical issues are also concerned. This study summarized the research and application progress of gene editing technology involving ethical issues in recent years. Based on sorting out the international discussions, attitudes, and explorations about gene editing ethics issues, after analyzing the current status, discussions, and measures of applications of gene editing technology on human beings in China, we propose five suggestions about the ethical governance system construction of gene editing technology for China.

First page


Last Page





Bulletin of Chinese Academy of Sciences

Original Submission Date



1 Ding Q R, Regan S N, Xia Y L, et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 2013, 12(4):393-394.

2 Musunuru K. Genome editing of human pluripotent stem cells to generate human cellular disease models. Disease Models & Mechanisms, 2013, 6(4):896-904.

3 Chang N N, Sun C H, Gao L, et al. Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Research, 2013, 23(4):465-472.

4 Araki M, Ishii T. International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reproductive Biology and Endocrinology, 2014, 12:108.

5 Fogarty N M E, McCarthy A, Snijders K E, et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature, 2017, 550:67-73.

6 Wu Y X, Liang D, Wang Y H, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013, 13(6):659-662.

7 Yin H, Xue W, Chen S D, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 2014, 32(6):551-553.

8 Xu L, Park K H, Zhao L X, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Molecular Therapy, 2016, 24(3):564-569.

9 Kang X J, He W Y, Huang Y L, et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. Journal of Assisted Reproduction and Genetics, 2016, 33(5):581-588.

10 Ma H, Marti-Gutierrez N, Park S W, et al. Correction of a pathogenic gene mutation in human embryos. Nature, 2017, 548:413-419.

11 Lu Y, Xue J X, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nature Medicine, 2020, 26(5):732-740.

12 Gillmore J D, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. The New England Journal of Medicine, 2021, 385(6):493-502.

13 Frangoul H, Altshuler D, Cappellini M D, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. The New England Journal of Medicine, 2021, 384(3):252-260.

14 Fu Y F, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9):822-826.

15 Zuo E W, Cai Y J, Li K, et al. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Research, 2017, 27(7):933-945.

16 Crudele J M, Chamberlain J S. Cas9 immunity creates challenges man-embryo-genome-editing.

17 Haapaniemi E, Botla S, Persson J, et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nature Medicine, 2018, 24(7):927-930.

18 Ihry R J, Worringer K A, Salick M R, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nature Medicine, 2018, 24(7):939-946.

19 Alanis-Lobato G, Zohren J, McCarthy A, et al. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. PNAS, 2021, 118(22):e2004832117.

20 Zuccaro M V, Xu J, Mitchell C, et al. Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell, 2020, 183(6):1650-1664.

21 Liang D, Gutierrez N M, Chen T L, et al. Frequent gene conversion in human embryos induced by double strand breaks. bioRxiv, 2020, doi:10.1101/2020.06.19.162214.

22 Isasi R, Kleiderman E, Knoppers B M. Editing policy to fit the genome?. Science, 2016, 351:337-339.

23 National Academy of Sciences, National Academy of Medicine. Human Genome Editing:Science, Ethics, and Governance. Washington DC:National Academies Press, 2017.

24 Ormond K E, Mortlock D P, Scholes D T, et al. Human germline genome editing. The American Journal of Human Genetics, 2017, 101(2):167-176.

25 Bioethics N C. Genome Editing and Human Reproduction:Social and Ethical Issues. London:Nuffield Council on Bioethics, 2018.

26 World Health Organization. Human genome editing:A framework for governance. (2021-07-12)[2021-10-25]. https://www.who.int/publications/i/item/9789240030060.

27 World Health Organization. Human genome editing:Recommendations. (2021-07-12)[2021-10-25]. https://www.who.int/publications/i/item/9789240030381.

28 Galvin M. Statement from the Organizing Committee on Reported Human Embryo Genome Editing. (2018-12-26)[2021-03-03]. https://www.nationalacademies.org/news/2018/11/statement-from-the-organizing-committee-on-reported-human-embryo-genome-editing.

29 Dzau V J, McNutt M, Bai C L. Wake-up call from Hong Kong. Science, 2018, 362:1215.

30 Lander E S, Baylis F, Zhang F, et al. Adopt a moratorium on heritable genome editing. Nature, 2019, 567:165-168.

31 Doudna J. CRISPR's unwanted anniversary. Science, 2019, 366:777.

32 Dryzek J S, Nicol D, Niemeyer S, et al. Global citizen deliberation on genome editing. Science, 2020, 369:1435-1437.

33 Vassena R, Heindryckx B, Peco R, et al. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Human Reproduction Update, 2016, 22(4):411-419.

34 Doudna J A. The promise and challenge of therapeutic genome editing. Nature, 2020, 578:229-236.

35 Quétier F. The CRISPR-Cas9 technology:Closer to the ultimate toolkit for targeted genome editing. Plant Science, 2016, 242:65-76.

36 James S, Collins F H, Welkhoff P A, et al. Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa:Recommendations of a scientific working group. The American Journal of Tropical Medicine and Hygiene, 2018, 98(6_Suppl):1-49.

37 Breed M F, Harrison P A, Blyth C, et al. The potential of genomics for restoring ecosystems and biodiversity. Nature Reviews Genetics, 2019, 20(10):615-628.

38 Lei R P, Zhai X M, Zhu W, et al. Reboot ethics governance in China. Nature, 2019, 569:184-186.

39 雷瑞鹏, 翟晓梅, 朱伟, 等. 人类基因组编辑:科学、伦理学与治理. 北京:中国协和医科大学出版社, 2019. 40 Collins F S, Gottlieb S. The next phase of human gene-therapy oversight. The New England Journal of Medicine, 2018, 379(15):1393-1395.