Bulletin of Chinese Academy of Sciences (Chinese Version)


field station network, comprehensive observation network, special observation network, scientific and technological infrastructure, scientific research sample plot

Document Type

CAS Field Station


Acting as a distributed field science and technology infrastructure, the field station network of Chinese Academy of Sciences (CAS) has evolved to be an important scientific and technological infrastructure with comparative advantage in China. Especially, the Chinese Ecosystem Research Network (CERN) leads the construction and development of the national ecosystem station network. The top-level design and overall layout have been paid more attention in the construction of the field scientific observation and research network of CAS during the 14th Five-Year Plan, and the orientation and objectives of the field station network is highlighted further. The main tasks include improving the quality of observation data continuously to enhance the capability of data services and data sharing; emphasizing the construction of key scientific infrastructure in field stations and promoting the approval of Chinese Terrestrial Ecosystem Observation and Experiment Network (Kun-Mai Project) which both are benefit to improve the equipment level and enhance the core competitiveness of the field station network; strengthening the informatization construction of the field station to enhance operational support capabilities and improve the scientific research environment; deepening the scientific research for discipline frontiers and national scientific needs to embody the value of the field station network; building and expanding the specific observation networks; and emphasizing the international exchange and cooperation.

First page


Last Page





Bulletin of Chinese Academy of Sciences

Original Submission Date



[1] 牛栋, 黄铁青, 杨萍, 等. 中国生态系统研究网络(CERN)的建设与思考. 中国科学院院刊, 2006, 21(6): 466-471.

[2] 杨萍, 于秀波, 庄绪亮, 等. 中国科学院中国生态系统研究网络(CERN)的现状及未来发展思路. 中国科学院院刊, 2008, 23(6): 555-561.

[3] 赵林, 郭东信, 李述训. 青藏高原综合观测研究站的回顾与展望. 冰川冻土, 1998, 20(3): 288-293.

[4] 宁百齐, 李国主, 胡连欢, 等. 地球空间环境的野外科学观测研究. 中国科学院院刊, 2019, 34(6): 726-733.

[5] 刘长华, 冯立强, 贾思洋, 等. 信息技术在海洋观测浮标系统安全保障体系的应用. 科研信息化技术与应用, 2014, 5(4): 75-81.

[6] Fu B J, Li S G, Yu X B, et al. Chinese ecosystem research network:Progress and perspectives. Ecological Complexity, 2010, 7(2): 225-233.

[7] 万卫星, 魏勇, 郭正堂, 等. 从深空探测大国迈向行星科学强国. 中国科学院院刊, 2019, 34(7): 748-755.

[8] 杨萍, 白永飞, 宋长春, 等. 野外站科研样地建设的思考、探索与展望. 中国科学院院刊, 2020, 35(1): 125-133.

[9] 牛栋, 杨萍, 何洪林. 美国长期生态学研究网络(LTER)信息化基础设施现状、挑战与未来发展趋势——LTER信息化基础设施战略规划介绍. 地球科学进展, 2008, 23(2): 201-205.

[10] Liu Z R, Hu B, Yang Y, et al. Evaluating the size distribution characteristics and sources of atmospheric trace elements at two mountain sites:Comparison of the clean and polluted regions in China. Environmental Science and Pollution Research, 2020, 27: 42713-42726.

[11] 于贵瑞, 孙晓敏. 中国陆地生态系统碳通量观测技术及时空变化特征. 北京: 科学出版社, 2008.

[12] 贺前钱, 罗少聪, 孙和平, 等. 武汉九峰站地下水变化对重力场观测的影响. 地球物理学报, 2016, 59(8): 2765-2772.

[13] Ma K P. Assessing progress of biodiversity conservation with monitoring approach. Biodiveristy Science, 2011, 19(2): 125-126.