•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Authors

LI Shengyu, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Mosuowan Desert Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Shihezi 832000, China; Taklimakan Desert Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Korla 841000, China; University of Chinese Academy of Sciences, Beijing 100049, China
LEI Jiaqiang, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Taklimakan Desert Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Korla 841000, China; University of Chinese Academy of Sciences, Beijing 100049, China
XU Xinwen, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Taklimakan Desert Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Korla 841000, China; University of Chinese Academy of Sciences, Beijing 100049, China
QU Jianjun, Northwest Institute of Eco-environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
REN Hongjing, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Mosuowan Desert Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Shihezi 832000, China; Taklimakan Desert Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Korla 841000, China

Keywords

highway; railway; blown-sand hazard; sand prevention measures; sand control system

Document Type

Article

Abstract

Highways and railways are important infrastructures of land transportation. The blown-sand hazard control of traffic arteries in sandy areas has always been one important issue in the national economy and society. In view of the characteristics of aeolian environment and the demand for safe operation of traffic arteries, China has carried out a large number of sand hazard control experiment and practices mainly on technology innovation of materials, measures, comprehensive system, maintenance, summed up four configuration patterns of sand control system, and created some patterns of sand hazard control technology for desert traffic arteries in different aeolian environments with Chinese characteristics, the patterns have been applied successfully in the Baotou-Lanzhou Railway, Qinghai-Tibet Railway, Tarim Desert Highway and Open Channel in Gurbantunggut Desert. China's achievements in the sand hazard control for land transportation arteries have a broad application prospect in sandy areas in the world, especially in the countries along the Belt and Road.

First page

665

Last Page

674

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

中国公路交通史编审委员会.中国古代道路交通史.北京:人民交通出版社, 1994:1.

郑晓静.风沙运动的力学机理研究.科技导报, 2007, 25(14):22-27.

赵性存.中国古代沙漠地区的交通开发.中国沙漠, 1983, 3(2):15-22.

中华人民共和国交通运输部. 2019年交通运输行业发展统计公报.[2020-05-12]. http://xxgk.mot.gov.cn/jigou/zhghs/202005/t20200512_3374322.html.

刘德基.我国第一条沙漠铁路.铁道工程学报, 1996, 13(2):264-271.

刘媖心.包兰铁路沙坡头地段铁路防沙体系的建立及其效益.中国沙漠, 1987, 7(4):1-11.

康文岩, 王立, 屈建军, 等.包兰铁路沙坡头段不同编制结构的枝条阻沙栅栏防护效应风洞模拟.中国沙漠, 2020, 40(2):94-99.

冯连昌, 卢继清, 邸耀全.中国沙区铁路沙害防治综述.中国沙漠, 1994, 14(2):47-53.

韩致文, 王涛, 孙庆伟, 等.塔克拉玛干沙漠公路风沙危害与防治.地理学报, 2003, 58(2):201-208.

相建民, 李生宇, 买光荣, 等.塔里木公路防护林生态工程营建与维护.水土保持通报, 2006, 26(5):39-42.

杨凯, 张小由, 韩致文, 等.沙漠地区高速公路综合防沙体系研究——以营双高速公路八步沙段为例.安徽农业科学, 2016, 44(28):50-52.

张乘波.兰新高速铁路风沙区段挡沙墙设计参数试验研究.铁道标准设计, 2016, 60(9):4-8.

荣文文.内蒙古大塔-何家塔铁路风沙路基综合防护体系.中国沙漠, 2019, 39(4):129-138.

李鑫, 艾力·斯木吐拉, 陈正奇, 等.沙漠公路交通事故特征及成因分析.长沙交通学院学报, 2006, 22(2):51-55.

马广学, 金海鹏.试探风沙对公路的危害及防治原则.才智, 2009, (12):51.

钱征宇.中国沙漠铁路的风沙危害及其防治技术.中国铁路, 2003, (10):24-26.

李生宇, 范敬龙, 王海峰, 等. 315国道策勒恰哈桥段风沙灾害成因初步分析与治理对策.干旱区地理, 2016, 39(4):754-760.

刘贤万.实验风沙物理与风沙工程学.北京:科学出版社, 1995:123.

屈建军, 刘贤万, 雷加强, 等.尼龙网栅栏防沙效应的风洞模拟实验.中国沙漠, 2001, 21(3):276-280.

李生宇, 雷加强, 徐新文, 等.塔克拉玛干沙漠腹地阻沙栅栏对垄间新月形沙丘形态的影响.干旱区地理, 2008, 31(6):910-917.

李生宇, 雷加强.草方格沙障的生态恢复作用——以古尔班通古特沙漠油田公路扰动带为例.干旱区研究, 2003, 20(1):7-10.

王世杰, 徐新文, 康向光, 等.机械防沙体系风沙危害状况及其空间分异——以阿拉尔-和田沙漠公路为例.干旱区研究, 2015, 32(5):1017-1023.

程鹏, 薛万新, 马韫娟, 等.高速公路强横风区间新型柔性防风网设计方案研究——以连霍高速百里风区为例.中国科技信息, 2012, (8):169-172.

薛春晓, 蒋富强, 程建军, 等.兰新铁路百里风区挡沙墙防沙效益研究.冰川冻土, 2011, 33(4):859-862.

蔡东旭, 李生宇, 王海峰, 等.新疆S214公路台特玛湖干涸湖盆段风沙危害及防治.中国沙漠, 2020, 40(1):1-11.

叶彩娟.高速铁路半封闭防风走廊结构动模型试验研究.铁道建筑, 2019, 59(4):152-156.

李生宇, 雷加强, 石泽云. DB 65/T 3590-2014沙区公路生物防沙体系养护技术规程.乌鲁木齐: 新疆维吾尔自治区质量技术监督局, 2014.

姚正毅, 陈广庭, 韩致文, 等.机械防沙体系防沙功能的衰退过程.中国沙漠, 2006, 26(2):226-231.

雷加强, 王雪芹, 王德.塔里木沙漠公路风沙危害形成研究.干旱区研究, 2003, 20(1):1-6.

王训明, 陈广庭.塔里木沙漠公路沿线机械防沙体系效益评价及防沙带合理宽度的初步探讨.干旱区资源与环境, 1997, 11(4):28-35.

金昌宁, 董治宝, 李吉均, 等.公路防沙设计中夸大沙害严重性原因分析.中国沙漠, 2005, 25(6):928-932.

张克存, 屈建军, 鱼燕萍, 等.中国铁路风沙防治的研究进展.地球科学进展, 2019, 34(6):573-583.

屈建军, 凌裕泉, 井哲帆, 等.包兰铁路沙坡头段风沙运动规律及其与防护体系的相互作用.中国沙漠, 2007, 27(4):529-533.

王涛等.中国风沙防治工程.北京:科学出版社, 2011.

张克存, 屈建军, 姚正毅, 等.青藏铁路格拉段风沙危害及其防治.干旱区地理, 2014, 37(1):74-80.

屈建军, 凌裕泉, 刘宝军, 等.我国风沙防治工程研究现状及发展趋势.地球科学进展, 2019, 34(3):225-231.

谢胜波, 屈建军, 刘冰, 等.青藏铁路沙害及其防治研究进展.中国沙漠, 2014, 34(1):42-48.

任康.青藏铁路沿线严重沙害区植被恢复措施及恢复效果研究.北京: 北京林业大学, 2019.

罗久富, 郑景明, 周金星, 等.青藏高原高寒草甸区铁路工程迹地植被恢复过程的种间关联性.生态学报, 2016, 36(20):6528-6537.

周兴佳, 樊自立.塔里木沙漠石油公路.北京:石油工业出版社, 1996:1-18.

雷加强, 李生宇, 范冬冬, 等.塔里木沙漠公路沿线风沙危害形成环境分级与区划.科学通报, 2008, 53(S2):1.

雷加强.塔里木沙漠公路风沙危害及其防治研究.北京: 中国科学院研究生院, 2003.

Lei J Q, Li S Y, Fan D D, et al. Classification and regionalization of the forming environment of windblown sand disasters along the Tarim Desert Highway. Chinese Science Bulletin, 2008, 53(2):1-7.

韩致文, 王涛, 孙庆伟, 等.塔克拉玛干沙漠公路风沙危害与防治.地理学报, 2003, 58(2):201-208.

Li B W, Xu X W, Lei J Q, et al. Site type classification for the shelter-forest ecological project along the Tarim Desert Highway. Chinese Science Bulletin, 2008, 53(2):31-40.

李红忠, 李生宇, 雷加强, 等.塔克拉玛干沙漠不同矿化度水灌溉造林试验研究.干旱区地理, 2005, 28(3):305-310.

何兴东, 高玉葆, 段争虎, 等.塔里木沙漠公路植物固沙灌溉方式比较研究.地理科学, 2002, 22(2):213-218.

杜虎林, 马振武, 熊建国, 等.塔里木沙漠公路与沙漠油田区域水资源研究及其利用评价.北京:海洋出版社, 2005:153.

李江风.新疆气候.北京:气象出版社, 1991:97-100.

周宏飞, 李彦, 汤英, 等.古尔班通古特沙漠的积雪及雪融水储存特征.干旱区研究, 2009, 26(3):312-317.

邓铭江, 王远超, 李江, 等.沙漠地区大型供水工程建设的关键技术与方法.岩石力学与工程学报, 2017, 36(12):3085-3094.

钱亦兵, 雷加强, 吴兆宁.古尔班通古特沙漠风沙土水分垂直分布与受损植被的恢复.干旱区资源与环境, 2002, 16(4):69-74.

朱玉伟, 陈启民, 刘茂秀, 等.准噶尔盆地南缘无灌溉造林技术研究.防护林科技, 2009, (2):3-5, 28.

班卫强, 严成, 尹林克, 等.立地条件和积雪厚度对古尔班通古特沙漠梭梭造林的影响.中国沙漠, 2012, 32(2):395-398

马学喜, 李生宇, 靳正忠.流沙地表层土壤化学性质对免灌造林的响应——以古尔班通古特沙漠明渠防护林为例.水土保持通报, 2015, 35(4):206-212.

王雪芹, 蒋进, 张元明, 等.古尔班通古特沙漠南部防护体系建成10a来的生境变化与植物自然定居.中国沙漠, 2012, 32(2):372-379.

Huang J P, Yu H P, Guan X D, et al. Accelerated dryland expansion under climate change. Nature Climate Change, 2016, 6(2):166-171.

国家林业局防治荒漠化管理中心.国外荒漠化防治.北京:中国林业出版社, 2018.

Share

COinS