•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

data science; computing intelligence; big data; intelligent system; paradigm

Document Type

Article

Abstract

The development of data science is valuable to clarify the theoretical boundary of data science, and provides new possibilities and opportunities for the sustainable development of computing intelligence. Meanwhile, the development of computing intelligence and the emergence of new intelligence paradigms can offer new chance for applications of big data in various industries and fields. This paper discusses the connotation of data science, the development of computing intelligence, the new intelligence paradigm, and lists the key applications leading the development of data science and computing intelligence. Furthermore, based on the discussion during the 667th Xiangshan Science Conference, seven key problems of data science and computing technology are proposed, anticipating to attract attentions of both researchers and applications in related fields, grasping the opportunity of the era, and promoting sustainable development of data science and computing intelligence.

First page

1470

Last Page

1481

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521:436-444.

Tolle K M, Tansley D S W, Hey A J G. The fourth paradigm:Data-intensive scientific discovery. Proceedings of the IEEE, 2011, 99(8):1334-1337.

Anderson C. The end of theory:the data deluge makes the scientific method obsolete. Wired, 2008, 16(7):16-17.

李国杰, 程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考.中国科学院院刊, 2012, 27(6):647-657.

Killinger B A, Madaj Z, Sikora J W, et al. The vermiform appendix impacts the risk of developing Parkinson's disease. Science Translational Medicine, 2018, 10: eaar5280.

徐宗本, 唐年胜, 程学旗.数据科学:基本概念、方法论与发展趋势.北京:科学出版社, 2020.

Moses L E. Think and Explain with Statistics. MA: Addison-Wesley, 1986: 199-203.

Barabasi A L. Network Science. Cambridge: Cambridge University Press, 2016.

Turing A M. On computable numbers, with an application to the Entschei dungs problem. Proceedings of the London Mathematical Society, 1937, 2(1):230-265.

Church A. A set of postulates for the foundation of logic. The Annals of Mathematics, 1932, 33(2):346-366.

Bahri Y, Kadmon J, Pennington J, et al. Statistical mechanics of deep learning. Annual Review of Condensed Matter Physics, 2020, 11(1):501-528.

尼克.人工智能简史.北京:人民邮电出版社, 2017.

Zhang B, Shi L P, Song S. Creating more intelligent robots through brain-inspired computing. Science Robotics, 2016, 354(6318):1445.

Zhang Y H, Qu P, Ji Y, et al. A system hierarchy for brain-inspired computing. Nature, 2020, 586:378-384.

Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 1999, 3(2):82-102.

Back T, Fogel D B, Michalewicz Z. Handbook of Evolutionary Computation. Boca Raton: CRC Press, 1997.

Mitchell M. Complexity: A guided tour. Oxford: Oxford University Press, 2009.

Sun X, Pei Z M, Zhang C, et al. Design and analysis of a human-machine interaction system for researching human's dynamic emotion. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, DOI: 10.1109/TSMC.2019.2958094.

Wolpaw J R, Birbaumer N, McFarland D J, et al. Braincomputer interfaces for communication and control. Clinical Neurophysiology, 2002, 113(6):767-791.

Güera D, Delp E J. Deepfake video detection using recurrent neural networks//2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Auckland: IEEE, 2018: 1-6.

Zhang W, Mei H. A constructive model for collective intelligence. National Science Review, 2020, 7(8):1273-1277.

Mayer-Schönberger V, Cukier K. Big Data: A Revolution That will Transform how We Live, Work, and Think. Boston: Houghton Mifflin Harcourt, 2013.

Turing A M. Computing machinery and intelligence. Mind, 1950, 59:433-460.

Underwood S. Blockchain beyond bitcoin. Communications of the ACM, 2016, 59(11):15-17.

McMahan H B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data//The 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, 2017: 1273-1282.

刘益东.虚拟科学——科学研究的第五范式.科技创新导报, 2015, 12(29):7-13.

2012CG00195.pdf (1184 kB)

Click link below to download English version.

2012CG00195.pdf (1184 kB)

Share

COinS