Bulletin of Chinese Academy of Sciences (Chinese Version)


information technology; DNA storage; artificial intelligence; neuromorphological computing; brain like chips; bionics

Document Type



The concept of bionics combines biology and engineering technology to provide people with new principles, methods, and ways to improve and create new equipment, promote technological innovation, and solve technical problems in the most flexible, efficient, reliable, and economical way. Although information technology continues to develop, it still faces many challenges in the era of big data and intelligence. With the explosive growth of massive data, the demand of storage, calculation, and analysis, and its energy consumption and efficiency challenges, information technology is urgently needed to find a new development direction. Inspired by biotechnology, it is becoming an international frontier research direction to find information technology innovation scheme from biological structure. As active new research fields, DNA data storage and neural morphological computation as well as related research are representative directions, which have broad future development prospects. Based on the development status and trend of these two research directions, this study attempts to analyze the motivation, trend, and prospect of information technology development inspired by biotechnology. The next two decades will be an important time window for the cross integration of life field and information field. By learning and simulating from life system, and drawing on the new ideas, principles and theories provided by biotechnology research, the information field will produce a number of subversive technologies and applications, and it will affect the entire academic and industrial sessions.

First page


Last Page





Bulletin of Chinese Academy of Sciences


路甬祥.仿生学的意义与发展.科学中国人, 2004, (4):22-24.

王谷岩.视觉与仿生学.北京:知识出版社, 1985.

邓雨辰. DNA硬盘让数据存储无极限.人民日报, 2015-07-24.

Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540):529-533.

高文.解读新一代人工智能发展.软件和集成电路, 2018, (11):10-11.

Song S, Miller K D, Abbott L F. Competitive Hebbian learning through spike timing dependent synaptic plasticity. Nature Neuroscience, 2000, 3(9):919-926.

Markram H. The blue brain project. Nature Reviews Neuroscience, 2006, 7(2):153-160.

Ceze L, Nivala J, Strauss K. Molecular digital data storage using DNA. Nature Reviews Genetics, 2019, 20(8):456-466.

Davis J. Mcrovenus. Art Journal, 1996, 55(1):70-74.

Shipman S L, Nivala J, Macklis J D, et al. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature, 2017, 547(7663):345-349.

Goldman N, Bertion P, Chen S, et al. Towards practical, high capacity, low maintenance information storage in synthesized DNA. Nature, 2013, 494(7435):77-80.

Erlich Y, Zielinski D. DNA Fountain enables a robust and efficient storage architecture. Science, 2017, 355(6328):950-954.

Jain S, Farnoud F, Schwartz M, et al. Duplication correcting codes for data storage in the DNA of living organisms//IEEE International Symposium on Information Theory. Piscataway: IEEE, 2016: 1028-1032.

张淑芳, 彭康, 宋香明, 等. DNA数据存储技术研究进展.计算机科学, 2019, 46(6):21-28.

Blawat M, Gaedke K, Hutter I, et al. Forward error correction for DNA data storage. Procedia Computer Science, 2016, 80:1011-1022.

Bornholt J, Lopez R, Carmean D M, et al. Toward a DNAbased archival storage system. IEEE Micro, 2017, 37(3):98-104.

Extance A. How DNA could store all the world's data. Nature, 2016, 537(7618):22-24.

袁芳, 郑彦宁, 郑佳, 等. DNA存储技术的中美对比研究.全球科技经济瞭望, 2019, 34(12):71-76.

宋香明.基于Huffman编码的DNA信息存储方法研究.天津:天津大学, 2018.

Li S, Liu J K, Zhao G, et al. Cads:CRISPR/Cas12a assisted DNA steganography for securing the storage and transfer of DNA-encoded information. ACS Synthetic Biology, 2018, 7(4):1174-1178.

Kang J F, Gao B, Huang P, et al. Oxide-based RRAM: Requirements and challenges of modeling and simulation//IEEE International Electron Devices Meeting. Piscataway: IEEE, 2015: 1-5.

Zhang Y, Wu H Q, BAI Y, et al. Study of conduction and switching mechanisms in Al/AlO x/WO x/W resistive switching memory for multilevel applications. Applied Physics Letters, 2013, 102(23):233502.

Zhou J M, Liu N, Zhu L Q, et al. Energy-efficient artificial synapses based on flexible IGZO electric-double-layer transistors. IEEE Electron Device Letters, 2015, 36(2):198-200.

Xia M J, Zhu M, Wang Y C, et al. Ti-Sb-Te alloy:A candidate for fast and long-life phase-change memory. ACS Applied Materials & Interfaces, 2015, 7(14):7627-7634.

Davies M, Srinivasa N, Lin T H, et al. Loihi:A neuromorphic manycore processor with on-chip learning. IEEE Micro, 2018, 38(1):82-99.

Mallinson J B, Shirai S, Acharya S K, et al. Avalanches and criticality in self-organized nanoscale networks. Science Advances, 2019, 5(11):eaaw8438.

陶建华, 陈云霁.类脑计算芯片与类脑智能机器人发展现状与思考.中国科学院院刊, 2016, 31(7):803-811.

曾毅, 刘成林, 谭铁牛.类脑智能研究的回顾与展望.计算机学报, 2016, 39(1):212-222.

廖方宇, 洪学海, 汪洋, 等.数据与计算平台是驱动当代科学研究发展的重要基础设施.数据与计算发展前沿, 2019, 1(1):2-10.

孙哲南, 张兆翔, 王威, 等. 2019年人工智能新态势与新进展.数据与计算发展前沿, 2019, 1(2):1-16.

白春礼.科学谋划和加快建设世界科技强国.中国科学院院刊, 2017, 32(5):446-452.