Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
scientific computing; high performance computer; high performance computing applications
Document Type
Article
Abstract
Combining scientific modeling, algorithm, development of software, and computational simulation, high performance computing plays a very important role in key scientific discoveries of basic scientific research area and modern engineering technology. Starting from demands of different scientific computing applications toward high performance computer and its development trend, this article analyzed a successful case that scientists from different institutes of Chinese Academy of Sciences (CAS) by working together finished a variety of application packages on Dawning 1000 supercomputer. They achieved some milestones in electronic structure calculation of natural DNA molecule, electronic state theoretical analysis of laser crystal material, and parallel computing of eigenvalue problem. CAS is always in the frontier of domestic scientific computing applications these years. In the condition of higher application level, larger computational scale, and outstanding achievements, we selected several typical traditional scientific computing applications including atmosphere science, life science, high energy physics, computational chemistry, material science and introduced their current status, promotion to application field, and future trend from a point of view of a scientist. Finally, several suggestions on developing China's further scientific computing have been proposed.
First page
625
Last Page
639
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
Dongarra J, Beckman P, Moore T, et al. The international exascale software project roadmap. International Journal of High Performance Computer Applications, 2011, 25(1):3-60.
迟学斌, 赵毅.高性能计算技术及其应用.中国科学院院刊, 2007, 22(4):306-313.
陈志明.科学计算:科技创新的第三种方法.中国科学院院刊, 2012, 27(2):161-166.
中国科学院数理学部"高性能计算战略研究"咨询组.加速发展我国高性能计算的若干建议.科研信息化技术与应用, 2008, 1(3):1-7.
Colella P. Defining software requirements for scientific computing//Patterson D. Can Computer Architecture Improve Scientific Productivity?[2019-6-10]. http://www.lanl.gov/conferences/salishan/salishan2005/supinski.pdf.
陈援.中科院"高性能并行计算"联合攻关组运用曙光1000喜获多项成果.中国科学报, 1996-03-15(2).
魏芳, 陈援.中科院"高性能并行计算"联合攻关获多项高水平成果.人民日报(海外版), 1996-03-30(4).
Yang C, Xue W, Fu H, et al. 10M-core scalable fullyimplicit solver for nonhydrostatic atmospheric dynamics//SC'16 Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Article No. 6, Salt Lake City, Utah, November 13-18, 2016.
刘海龙.高分辨率海洋环流模式和热带太平洋上层环流的模拟研究.北京: 中国科学院研究生院, 2002.
张学洪, 俞永强, 刘海龙, 等.海洋环流模式的发展和应用Ⅰ.全球海洋环流模式.大气科学, 2003, 27(4):607-617.
王文浩, 姜金荣, 王玉柱, 等.海洋模式LICOM的MIC并行优化.科研信息化技术与应用, 2015, 6(3):60-67.
Martin M, Singh D, Mourino J, et al. High performance air pollution modeling for a power plant environment. Parallel Computing, 2003, 29:1763-1790.
Lieber, M, Wolke, R. Optimizing the coupling in parallel air quality model systems. Environmental Modelling & Software, 2008, 23(2):235-243.
朱云, Lin Che-jen, 陈春贻, 等. 64位Linux并行计算大气模型效率优化研究.计算机应用研究, 2009, 26(6):2266-2269.
王自发, 吴其重, Gbaguidi A, 等.北京空气质量多模式集成预报系统的建立及初步应用.南京信息工程大学学报(自然科学版), 2009, 1(1):19-26.
Wang H, Lin J, Wu Q, et al. MP CBM-Z V1.0:design for a new Carbon Bond Mechanism Z (CBM-Z) gas-phase chemical mechanism architecture for next-generation processors. Geoscientific Model Development, 2019, 12(2):749-764.
Wang Y, Chen H, Wu Q, et al. Three-year, 5 km resolution China PM 2.5 simulation:Model performance evaluation. Atmospheric Research, 2018, 207:1-13.
Shaw D, Dror R, Salmon J, et al. Millisecond-scale molecular dynamics simulations on Anton//SC'09 Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, Article No. 39, Portland, Oregon, November 14-20, 2009.
Shaw D, Grossman J, Bank J, et al. Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer//SC'14 Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 41-53, New Orleans, Louisiana, November 16-21, 2014.
杜勇, 李凯, 赵丕植.研发铝合金的集成计算材料工程.航空材料学报, 2017, 37(1):1-18.
李波, 杜勇, 邱联昌, 等.浅谈集成计算材料工程和材料基因工程:思想及实践.中国材料进展, 2018, 38(7):506-525.
关永军, 陈柳, 王金三.材料基因组技术内涵与发展趋势.航空材料学报, 2016, 36(3):71-78.
Christodoulou J. Integrated computational materials engineering and materials genome initiative:Accelerating materials innovation. Advanced Materials & Processes, 2013, 171(3):28-31.
刘梓葵.关于材料基因组的基本观点及展望.科学通报, 2013, 58(35):3618-3622.
Zhang J, Zhou C, Wang Y, et al. Extreme-scale phase field simulations of coarsening dynamics on the Sunway Taihulight supercomputer//SC'16 Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Article No. 4, Salt Lake City, Utah, November 13-18, 2016.
Yu H, Emberson J, Inman D, Zhang T, et al. Differential neutrino condensation onto cosmic structure. Nature Astronomy, 2017, 1:0143.
莫则尧, 张爱清.并行自适应结构网格应用支撑软件框架JASMIN用户指南.北京应用物理与计算数学研究所技术报告:T09-JMJL-01, 2009.
张林波, 郑伟英, 卢本卓, 等.并行自适应有限元软件平台PHG及其应用.中国科学:信息科学, 2016, 46(10):1442-1464.
Recommended Citation
Zhong, JIN; Zhonghua, LU; Huiyuan, LI; Xuebin, CHI; and Jiachang, SUN
(2019)
"Origin of High Performance Computing——Current Status and Developments of Scientific Computing Applications,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 34
:
Iss.
6
, Article 3.
DOI: https://doi.org/10.16418/j.issn.1000-3045.2019.06.004
Available at:
https://bulletinofcas.researchcommons.org/journal/vol34/iss6/3