•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

deep water; acoustic propagation; passive localization

Document Type

Article

Abstract

As the ocean technology in deep water is paid much more attention than that in shallow water, the target detection techniques used in deep water are also attracting much more attention. So far, only the acoustic signal is favorable for long-distance transmission in the water. An ocean acoustic technology based on the property of the sound propagation is the key for the breakthrough of the target detection range of the sonar. This paper gives an overview on the basic acoustic propagation paths and passive localization methods used in deep water. The aim is to advance the fundamental research on acoustic signal processing.

First page

314

Last Page

320

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

张仁和.水声物理、信号处理与海洋环境紧密结合是水声技术发展的趋势.应用声学, 2006, 25(6):325-327.

Baker W F. New formula for calculating acoustic propagation loss in a surface duct in the sea. The Journal of the Acoustical Society of America, 1975, 57(5):1198-1200.

Schulkin M. Surface-coupled losses in surface sound channels. The Journal of the Acoustical Society of America, 1968, 44(4):1152-1154.

Duan R, Yang K, Ma Y. Investigation of long-range sound propagation in surface ducts. Chinese Physics B, 2013, 22(12):297-307.

Duan R, Yang K D, Ma Y L, et al. A study of the mixed layer of the South China Sea based on the multiple linear regression. Acta Oceanologica Sinica, 2012, 31(6):19-31.

Labianca F M. Normal modes, virtual modes, and alternative representations in the theory of surface-duct sound propagation. The Journal of the Acoustical Society of America, 1973, 53(4):1137-1147.

Murphy E L, Davis J A. Modified ray theory for bounded media. The Journal of the Acoustical Society of America, 1974, 56(6):1747-1760.

Porter M B, Jensen F B. Anomalous parabolic equation results for propagation in leaky surface ducts. The Journal of the Acoustical Society of America, 1993, 94(3):1510-1516.

Duan R, Yang K, Ma Y, et al. A simple expression for sound attenuation due to surface duct energy leakage in low-latitude oceans. The Journal of the Acoustical Society of America, 2016, 139(5):118-123.

Bongiovanni K P, Siegmann W L, Ko D S. Convergence zone feature dependence on ocean temperature structure. The Journal of the Acoustical Society of America, 1996, 100(5):3033-3041.

Arvelo J I, Yuan J R, Bao X L, et al. Contribution of bottomrefracted sound to oceanic sound propagation. The Journal of the Acoustical Society of America, 1992, 92(4):2302.

Baus T A, Chang W. Modeling of echoes from elastic spherical and cylindrical shells in a convergence zone. The Journal of the Acoustical Society of America, 1992, 92(4):2337-2338.

Xiao P, Yang K. Temporal coherence of acoustic signal transmissions in a fluctuating deep ocean. Journal of Computational Acoustics, 2016, 24(3):1650010.

Li J, Li Z, Ren Y. Spatial correlation of the high intensity zone in deep-water acoustic field. Chinese Physics B, 2016, 25(12):69-76.

Virovlyansky A L, Kazarova A Y, Lyubavin L Y. Ray-based description of shadow zone arrivals. The Journal of the Acoustical Society of America, 2011, 129(5):2851-2862.

Munk W. Scattering into the shadow zone. The Journal of the Acoustical Society of America, 2001, 109(5):2386-2386.

Udovydchenkov I A, Stephen R A, Duda T F, et al. Bottom interacting sound at 50 km range in a deep ocean environment. The Journal of the Acoustical Society of America, 2012, 132(4):2224-2231.

段睿.深海环境水声传播及声源定位方法研究.西安:西北工业大学, 2016.

Thompson S R. Sound propagation considerations for a deep-ocean acoustic network. Monterey, California:Naval Postgraduate School, 2009.

Worcester P F, Andrew R K, Baggeroer A B, et al. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. The Journal of the Acoustical Society of America, 2013, 134(4):3359-3375.

Yang K, Li H, Duan R. Horizontal-longitudinal spatial correlation of acoustic field with deep receiver in the direct zone in deep water. Chinese Physics Letters, 2017, 34(2):024301.

Fizell R G, Wales S C. Source localization in range and depth in an Arctic environment. The Journal of the Acoustical Society of America, 1985, 78(S1):57-58.

Yang T C. A method of range and depth estimation by modal decomposition. The Journal of the Acoustical Society of America, 1987, 82(5):1736-1745.

Tran J Q D, Hodgkiss W S. Matched-field processing of 200 Hz continuous wave (cw) signals. The Journal of the Acoustical Society of America, 1991, 89(2):745-755.

Westwood E K. Broadband matched-field source localization. The Journal of the Acoustical Society of America, 1992, 91(5):2777-2789.

陈连荣, 彭朝晖, 南明星.高斯射线束方法在深海匹配场定位中的应用.声学学报, 2013, 38(6):715-723.

Duan R, Yang K, Ma Y, et al. Moving source localization with a single hydrophone using multipath time delays in the deep ocean. The Journal of the Acoustical Society of America, 2014, 136(2):159-165.

Lei Z, Yang K, Ma Y. Passive localization in the deep ocean based on cross-correlation function matching. The Journal of the Acoustical Society of America, 2016, 139(6):196-201.

孙梅, 周士弘.大深度接收时深海直达波区的复声强及声线到达角估计.物理学报, 2016, 65(16):134-143.

Mccargar R, Zurk L M. Depth-based signal separation with vertical line arrays in the deep ocean. The Journal of the Acoustical Society of America, 2013, 133(4):320-325.

Boyle J K, Kniffin G P, Zurk L M. Performance metrics for depth-based signal separation using deep vertical line arrays. The Journal of the Acoustical Society of America, 2016, 139(1):418-425.

Duan R, Yang K, Li H, et al. Acoustic-intensity striations below the critical depth:Interpretation and modeling. The Journal of the Acoustical Society of America, 2017, 142(3):245-250.

Yang K, Li H, Duan R, et al. Analysis on the characteristic of cross-correlated field and its potential application on source localization in deep water. Journal of Computational Acoustics, 2017, 25(2):1750001.

Share

COinS