Bulletin of Chinese Academy of Sciences (Chinese Version)


underwater acoustic signal processing; underwater acoustic detection; feature extraction; environmental adaptive processing; intelligent signal processing

Document Type



Underwater acoustic detection technology is the most important research direction on underwater acoustic signal processing and sonar filed, and is the key technology on marine applications for environment aware, ocean surveillance, resource exploration, information acquisition and so on. This paper gives a brief introduction on the current status of underwater acoustic detection. With scientific problems in practice, the new concept, new method, and new trend of this field are presented. Subsequently, the important effect of underwater acoustic detection development on national security and economic progress is analyzed and prospected.

First page


Last Page





Bulletin of Chinese Academy of Sciences


李启虎.数字式声呐设计原理.合肥:安徽教育出版社, 2002.

李启虎.第一讲进入21世纪的声呐技术.物理, 2005, 35(5):402-407.

Hildebrand J A. Anthropogenic and natural sources of ambientnoise in the ocean. Marine Ecology Progress Series, 2009, 395:5-20.

Chapman N R, Andrea Price. Low frequency deep ocean ambient noise trend in the Northeast Pacific Ocean. Journal of the Acoustical Society of America, 2011, 129(5):161-165.

杨士莪.水声传播原理.哈尔滨:哈尔滨工程大学出版社, 2007.

Li Q H. Theoretical analysis and experiment result of interference striation pattern of underwater target radiated noise in shallow waveguide. Chinese Journal of Acoustcis, 2011, 30(1):73-80.

李启虎, 李敏, 杨秀庭.水下目标辐射噪声中单频信号分量的探测:理论分析.声学学报, 2008, 33(3):193-196..

杨德森, 朱中锐, 田迎泽.矢量声呐技术理论基础及应用发展趋势.水下无人系统学报, 2018, 26(3):185-192.

邱天爽, 张旭秀, 李小兵.统计信号处理:非高斯信号处理及其应用.武汉:中国水利水电出版社, 2004.

Gammaitioni L, Hanggi P, Jung P, et al. Stochastic resonance. Reviews of Modern Physics, 1998, 70(1):223-287.

Haykin S, Thomson D J. Signal detection in a nonstationary environment reformulatied as an adaptive pattern classification problem. Proceedings of IEEE, 1998, 86(1):2325-2344.

Shin F B, Kil D H. Full spectrum signal process. OCEANS. IEEE, 1995, (1):397-403.

Gingras D F. Robust broadband matched-field processing:performance in shallow water. IEEE Journal of Oceanic Engineering, 1993, 18(3):253-264.

Ephraty A, Tabrikian J, Messer H. Robust source detection. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1995, (5):3705-3708.

Baggeroer A B, Kuperman W A, Mikhalecsky P N. An overview of matched field methods in ocean acoustics. IEEE Journal of Oceanic E ngineering, 1993, 18(4):401-424.

Sullivan E J, Candy J V. Space-Time Array Processing:The Model-Based Approach.The Journal of the Acoustical Society of America, 1997, 102:2809-2820.

Sazontov A G, Malekhanov A I. Matched field signal processing in underwater sound channels (Review). AcousticalPhysics, 2015, 61:213-230.

赵航芳, 李建龙, 宫先仪.不确实海洋中最小方差匹配场波束形成对环境参量失配的灵敏性分析.哈尔滨工程大学学报, 2011, 32(2):200-208.

Candy J V. Model-Based Signal Processing. NewYork:Wiley, 2006.

D'Spain G L, Kuperman W A. Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth. The Journal of the Acoustical Society of America, 1999, 106(5):2454.

相明, 韩崇昭, 赵俊渭, 等.基于NEYMAN-PEARSON准则的最优分布式量化检测融合算法.探测与控制学报, 2002, 24(4):1-6.

高宏建, 宋笔锋.非相关累积情况下的分布式探测系统性能分析方法研究.西北工业大学学报, 2003, 21(2):230-234.

李宇, 王彪, 黄海宁, 等. MIMO探测声呐研究.声学技术, 2007, 26(5):48.

任宇飞, 李宇, 黄海宁.能量值和方位信息结合的粒子滤波算法.哈尔滨工程大学学报, 2017, 38(7):1143-1150.

Jason E S, Jason M T. Deep reinforcement learning for cogntive sonar.The Journal of the Acoustical Society of America, 2018, 143:1716.