Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
permafrost; active layer; temperature; soil moisture content; precipitation
Document Type
Article
Abstract
Under the background of global warming, permafrost on the Qinghai-Tibet Plateau has been experienced a significant degradation, which may have effects on regional climate, hydrological and ecological processes. Based on long-term observation data in permafrost region of Qinghai-Tibet Plateau and reanalysis data, the variation characteristics of temperature and precipitation in permafrost region in recent ten years were analyzed, and the variation trends of active layer thickness, ground temperature and soil water content were examined in this study. The spatial and temporal distribution of precipitation and soil water content in permafrost region from 1980 to 2018 were presented. The results showed that the permafrost in different regions on the Qinghai-Tibet Plateau has changed significantly in the past ten years. The thickness of the active layer and the ground temperature has increased, and the soil water content at the bottom of the active layer has increased. At the regional scale, the precipitation and soil water content in permafrost region increased significantly from 1980 to 2018. The possible impacts of permafrost degradation on hydrological processes, lake area changes and surface deformation were discussed. The results are helpful to understand the impact of permafrost changes on regional environment, deepen our understanding of the mechanisms of the interaction between permafrost and water cycle, and provide a scientific basis for environmental protection, engineering design and construction in cold regions.
First page
1233
Last Page
1246
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
Zou D, Zhao L, Sheng Y, et al. A new map of permafrost distribution on the Tibetan Plateau. The Cryosphere, 2017, 11(6):2527-2542.
Zhao L, Wu Q, Marchenko S S, et al. Thermal state of permafrost and active layer in central asia during the international polar year. Permafrost and Periglacial Processes, 2010, 21(2):198-207.
Wu Q, Niu F. Permafrost changes and engineering stability in Qinghai-Xizang Plateau. Chinese Science Bulletin, 2013, 58(10):1079-1094.
Hu G, Zhao L, Wu X, et al. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma, 2019, 337:893-905.
Jin H, Luo D, Wang S, et al. Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sciences in Cold and Arid Regions, 2011, 3(4):281-305.
Li R, Zhao L, Ding Y, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chinese Science Bulletin, 2012, 57(35):4609-4616.
Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research:Earth Surface, 2007, 112:F02S03.
Cheng G, Jin H. Permafrost and groundwater on the QinghaiTibet Plateau and in Northeast China. Hydrogeology Journal, 2013, 21(1):5-23.
Cuo L, Zhang Y, Bohn T J, et al. Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. Journal of Geophysical Research:Atmospheres, 2015, 120(16):8276-8298.
Yang K, Ye B, Zhou D, et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic change, 2011, 109(3-4):517-534.
Jin H, He R, Cheng G, et al. Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters, 2009, 4(4):045206.
Osterkamp T E. Freezing and thawing of soils and permafrost containing unfrozen water or brine. Water Resources Research, 1987, 23(12):2279-2285.
Cheng G. The mechanism of repeated-segregation for the formation of thick layered ground ice. Cold Regions Science & Technology, 1983, 8(1):57-66.
Kurylyk B L, MacQuarrie K T B, McKenzie J M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions:implications, mathematical theory, and emerging simulation tools. Earth-Science Reviews, 2014, 138:313-334.
Kurylyk B L, MacQuarrie K T B, Voss C I. Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resources Research, 2014, 50(4):3253-3274.
Evans S G, Ge S, Liang S. Analysis of groundwater flow in mountainous, headwater catchments with permafrost. Water Resources Research, 2015, 51(12):9564-9576.
McKenzie J M, Voss C I. Permafrost thaw in a nested groundwater-flow system. Hydrogeology Journal, 2013, 21(1):299-316.
Watson V, Kooi H, Bense V. Potential controls on cold-season river flow behavior in subarctic river basins of Siberia. Journal of Hydrology, 2013, 489:214-226.
Walvoord M A, Voss C I, Wellman T P. Influence of permafrost distribution on groundwater flow in the context of climatedriven permafrost thaw:Example from Yukon Flats Basin, Alaska, United States. Water Resources Research, 2012, 48(7):W07524.
Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian Water Towers. Science, 2010, 328(5984):1382-1385.
Woo M K. Hydrology of a drainage basin in the Canadian High Arctic. Annals of the Association of American Geographers, 1983, 73(4):577-596.
Liljedahl A K, Boike J, Daanen R P, et al. Pan-Arctic icewedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience, 2016, 9(4):312-318.
牛富俊, 王玮, 林战举, 等.青藏高原多年冻土区热喀斯特湖环境及水文学效应研究.地球科学进展, 2018, 33(4):335-342.
Morgenstern A, Grosse G, Günther F, et al. Spatial analyses of thermokarst lakes and basins in yedoma landscapes of the lena delta. The Cryosphere, 2011, 5(4):849-867.
Zhao L, Ping C, Yang D, et al. Changes of climate and seasonally frozen ground over the past 30 years in QinghaiXizang (Tibetan) Plateau, China. Global and Planetary Change, 2004, 43(1-2):19-31.
Kang S, Xu Y, You Q, et al. Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 2010, 5(1):015101.
Du M, Liu J, Li Y, et al. Are high altitudinal regions warming faster than lower elevations on the Tibetan Plateau? International Journal of Global Warming, 2019, 18(3-4):363-384.
Hu G, Zhao L, Wu X, et al. Evaluation of reanalysis air temperature products in permafrost regions on the QinghaiTibetan Plateau. Theoretical and Applied Climatology, 2019, 6:1-14.
Zhu X, Wu T, Li R, et al. Impacts of summer extreme precipitation events on the hydrothermal dynamics of the active layer in the Tanggula permafrost region on the Qinghai-Tibetan Plateau. Journal of Geophysical Research:Atmospheres, 2017, 122(21):11549-11567.
Kuang X, Jiao J J. Review on climate change on the Tibetan Plateau during the last half century. Journal of Geophysical Research Atmospheres, 2016, 121(8):3979-4007.
Wang C, Shi H, Haolin H, et al. Properties of cloud and precipitation over the Tibetan Plateau. Advances in Atmospheric Sciences, 2015, 32(11):1504-1516.
You Q, Min J, Zhang W, et al. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Climate Dynamics, 2015, 45(3-4):791-806.
赵林, 程国栋, 李述训, 等.青藏高原五道梁附近多年冻土活动层冻结和融化过程.科学通报, 2000, 45(11):1205-1211.
程国栋, 赵林, 李韧, 等.青藏高原多年冻土特征、变化及影响.科学通报, 2019, 64(27):2783-2795.
Wu Q B, LIu Y Z, Zhang J M, et al. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China. Permafrost and Periglacial Processes, 2002, 13(3):199-205.
Wu X, Fang H, Zhao Y, et al. A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau. Journal of Geophysical Research:Biogeosciences, 2017, 122(7):1705-1717.
Cheng M, Zhong L, Ma Y, et al. A study on the assessment of multi-source satellite soil moisture products and reanalysis data for the Tibetan Plateau. Remote Sensing, 2019, 11(10):1196.
Gruber S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere, 2012, 6(1):221-233.
Marchenko S S, Gorbunov A P, Romanovsky V E. Permafrost warming in the Tien Shan Mountains, Central Asia. Global and Planetary Change, 2007, 56(3-4):311-327.
Luo D, Jin H, Lu L, et al. Spatiotemporal changes in extreme ground surface temperatures and the relationship with air temperatures in the Three-River Source Regions during 1980-2013. Theoretical and Applied Climatology, 2016, 123(3-4):885-897.
Severskiy E. Permafrost response to climate change in the Northern Tien Shan. Sciences in Cold and Arid Regions, 2017, 9(4):398-403.
Zhao L, Cheng G, Li S, et al. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chinese Science Bulletin, 2000, 45(23):2181-2187.
Zhang T, Frauenfeld O W, Serreze M C, et al. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. Journal of Geophysical Research:Atmospheres, 2005, 110(D16):D16101.
Lan Y, Jin H, La C, et al. Climate transformation to warmhumid and its effect on river runoff in the source region of the Yellow River. Sciences in Cold and Arid Regions, 2014, 6(3):257-265.
Lan Y, Zhao G, Zhang Y, et al. Response of runoff in the source region of the Yellow River to climate warming. Quaternary International, 2010, 226(1-2):60-65.
Yang D, Li C, Hu H, et al. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resources Research, 2004, 40(6):W06502.
Bense V F, Ferguson G, Kooi H. Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophysical Research Letters, 2009, 36(22):L22401.
Bense V F, Kooi H, Ferguson G, et al. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. Journal of Geophysical Research:Earth Surface, 2012, 117(F3):F03036.
Gao B, Yang D, Qin Y, et al. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau. The Cryosphere, 2018, 12:657-673.
巩同梁, 刘昌明, 刘景时.拉萨河冬季径流对气候变暖和冻土退化的响应.地理学报, 2006, (5):519-526.
陆胤昊, 叶柏生, 李翀.冻土退化对海拉尔河流域水文过程的影响.水科学进展, 2013, 24(3):319-325.
Zhang G, Yao T, Xie H, et al. Increased mass over the Tibetan Plateau:from lakes or glaciers? Geophysical Research Letters, 2013, 40(10):2125-2130.
Luo D, Wu Q, Jin H, et al. Recent changes in the active layer thickness across the northern hemisphere. Environmental Earth Science, 2016, 75(7):555.
Yang D, Ye B, Kane D L. Streamflow changes over Siberian Yenisei river basin. Journal of Hydrololgy, 2004, 296(1-4):59-80.
Ye B, Yang D, Kane D L. Changes in Lena River streamflow hydrology:Human impacts versus natural variations. Water Resources Research, 2003, 39(7):1200.
Berezovskaya S, Yang D, Kane D L. Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds. Geophysical Research Letters, 2004, 31(21):177-178.
Ye B, Yang D, Zhang Z, et al. Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. Journal of Geophysical Research Atmospheres, 2009, 114(D7):D07102.
Zhang G, Yao T, Xie H, et al. Lakes' state and abundance across the Tibetan Plateau. Chinese Science Bulletin, 2014, 59(24):3010-3021.
Lei Y, Yang K, Wang B, et al. Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change, 2014, 125(2):281-290.
沈德福, 李世杰, 姜永见, 等.黄河源区湖泊水环境特征及其对气候变化的响应.干旱区资源与环境, 2012, 26(7):91-97.
李林, 吴素霞, 朱西德, 等. 21纪以来黄河源区高原湖泊群对气候变化的响应.自然资源学报, 2008, 23(2):245-253.
吴吉春, 盛煜, 吴青柏, 等.气候变暖背景下青藏高原多年冻土层中地下冰作为水"源"的可能性探讨.冰川冻土, 2009, 31(2):350-356.
Lutz A F, Immerzeel W W, Shrestha A B, et al. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 2014, 4:587-592.
陈德亮, 徐柏青, 姚檀栋, 等.青藏高原环境变化科学评估:过去, 现在与未来.科学通报, 2015, 60(32):3025-3035.
张人禾, 苏凤阁, 江志红, 等.青藏高原21世纪气候和环境变化预估研究进展.科学通报, 2015, 60(32):3036-3047.
王宇涵, 杨大文, 雷慧闽, 等.冰冻圈水文过程对黑河上游径流的影响分析.水利学报, 2015, 46(9):1064-1071.
Lamontagne-Halle P, McKenzie J M, Kurylyk B L, et al. Changing groundwater discharge dynamics in permafrost regions. Environmental Research Letters, 2018, 13(8):084017.
赵林, 丁永建, 刘广岳, 等.青藏高原多年冻土层中地下冰储量估算及评价.冰川冻土, 2010, 32(1):1-9.
Wang G, Qian J, Cheng G, et al. Eco-environmental degradation and causal analysis in the source region of the Yellow River. Environmental Geology, 2001, 40(7):884-890.
Zhou H, Zhao X, Tang Y, et al. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassland Science, 2005, 51(3):191-203.
曹文炳, 万力, 周训, 等.黄河源区冻结层上水地质环境影响研究.水文地质工程地质, 2003, 30(6):6-10.
张森琦, 李原, 王永贵, 等.黄河源区区域地下水位下降及其生态环境地质问题.水文地质工程地质, 2009, 36(6):109-113.
赵林, 盛煜.青藏高原多年冻土及其变化.北京:科学出版社, 2019.
Wang W, Wu T, Zhao L, et al. Exploring the ground ice recharge near permafrost table on the central QinghaiTibet Plateau using chemical and isotopic data. Journal of Hydrology, 2018, 560:220-229.
Zhu X, Wu T, Zhao L, et al. Exploring the contribution of precipitation to water within the active layer during the thawing period in the permafrost regions of central QinghaiTibet Plateau by stable isotopic tracing. Science of the Total Environment, 2019, 661:630-644.
Yang Y, Wu Q, Yun H. Stable isotope variations in the ground ice of Beiluhe Basin on the Qinghai-Tibet Plateau. Quaternary International, 2013, 313:85-91.
Yang Y, Wu Q, Yun H, et al. Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai-Tibet Plateau using stable isotopes. Global and planetary change, 2016, 140:1-8.
Yang Y, Wu Q, Jin H. Evolutions of water stable isotopes and the contributions of cryosphere to the alpine river on the Tibetan Plateau. Environmental Earth Science, 2016, 75(1):49.
Yang Y, Wu Q, Jin H, et al. Delineating the hydrological processes and hydraulic connectivities under permafrost degradation on Northeastern Qinghai-Tibet Plateau. China Journal of Hydrology, 2019, 569:359-372.
周华云, 赵林, 田黎明, 等.基于Sentinel-1数据对青藏高原五道梁多年冻土区地面形变的监测与分析.冰川冻土, 2019, 41(3):525-536.
Chen F, Lin H, Zhou W, et al. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sensing of Environment, 2013, 138:10-18.
Li Z, Tang P, Zhou J, et al. Permafrost environment monitoring on the Qinghai-Tibet Plateau using time series ASAR images. International Journal of Digital Earth, 2015, 8(10):840-860.
Daout S, Doin M-P, Peltzer G, et al. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau. Geophysical Research Letters, 2017, 44(2):901-909.
李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变.地球物理学报, 2013, 56(5):1476-1486.
Yuan Y. Measuring Surface Deformation Caused by Permafrost Thawing Using Radar Interferometry, Case Study: Zackenberg, NE Greenland. Delft: Delft University of Technology, 2011.
Recommended Citation
Lin, ZHAO; Guojie, HU; Defu, ZOU; Xiaodong, WU; Lu, MA; Zhe, SUN; Liming, YUAN; Huayun, ZHOU; and Shibo, LIU
(2019)
"Permafrost Changes and Its Effects on Hydrological Processes on Qinghai-Tibet Plateau,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 34
:
Iss.
11
, Article 4.
DOI: https://doi.org/10.16418/j.issn.1000-3045.2019.11.006
Available at:
https://bulletinofcas.researchcommons.org/journal/vol34/iss11/4