•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

Tibetan Plateau and surroundings; Asian Water Tower; arid region; glacier melt runoff; global warming; water resources

Document Type

Article

Abstract

Glaciers, an important part of Asia's water tower, are extremely sensitive to climate change. The study on the spatiotemporal pattern of the changes of the glaciers in the Tibetan Plateau and surroundings in the context of global warming is helpful to identify the main water storage and supply areas of Asian Water Towers, which is of great significance for the rational planning and utilization of water resources. Through comprehensive analysis, it was revealed that the "Karakoram anomaly" might expand in different degrees to the Western Kunlun Mountains and the Pamirs, while the glaciers in the other parts of the Tibetan Plateau and surroundings were in an accelerated melting state recently. Moreover, we also illuminated the influences of the changes of the glaciers over the past 50 years and in different climate scenarios in the future on the basin water resources and sea level rise, and pointed out that the glacier observation and investigation should be carried out systematically, and a climate-ice-hydrological processes coupling model should be set up, in order to accurately assess the glacier melt water resources, which is an important basis for the green silk road construction.

First page

1220

Last Page

1232

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

IPCC. Climate Change 2013:The Physical Science Basis. Cambridge:Cambridge University Press, 2013:337-383.

RGI. RGI Consortium Randolph Glacier Inventory (v.6.0).[2019-08-01]. http://www.glims.org/RGI/randolph60.html.

Fekete B M, Vorosmarty C J, Grabs W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochemical Cycle, 2002, 16(3):1042.

王宁练, 张祥松.近百年来山地冰川波动与气候变化.冰川冻土, 1992, 14(3):242-250.

Zemp M, Huss M, Thibert E, et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 2019, 568(7752):382-386.

EDB. Impact of Climate Change to Water Resource in Central Asia. Almaty: Eurasian Development Bank (EDB), 2009.

Viviroli D, Weingartner R, Messerli B. Assessing the hydrological significance of the world's mountains. Mountain Research and Development, 2003, 23(1):32-40.

Viviroli D, Durr H H, Messerli B, et al. Mountains of the world, water towers for humanity:Typology, mapping, and global significance. Water Resources research, 2007, 43(7):W07447.

Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian Water Towers. Science, 2010, 328(5984):1382-1385.

Pfeffer W T, Arendt A A, Bliss A, et al. The randolph glacier inventory:A globally complete inventory of glaciers. Journal of Glaciology, 2014, 60(221):537-552.

施雅风.简明中国冰川目录.上海:上海科学普及出版社, 2005.

刘时银, 姚晓军, 郭万钦, 等.基于第二次冰川编目的中国冰川现状.地理学报, 2015, 70(1):3-16.

叶万花, 王飞腾, 李忠勤, 等.高亚洲定位监测冰川平衡线高度时空分布特征研究.冰川冻土, 2016, 38(6):1459-1469.

王宁练, 贺建桥, 蒲健辰, 等.近50年来祁连山七一冰川平衡线高度变化研究.科学通报, 2010, 55(32):3107-3115.

Guo W, Liu S, Xu J, et al. The second Chinese glacier inventory:data, methods and results. Journal of Glaciology, 2015, 61(226):357-372.

Cogley J G. Glacier shrinkage across High Mountain Asia. Annals of Glaciology, 2016, 57(71):41-49.

Ye Q, Zong J, Tian L, et al. Glacier changes on the Tibetan Plateau derived from Landsat imagery:mid-1970s-2000-2013. Journal of Glaciology, 2017, 63(238):273-287.

Wei J, Liu S, Guo W, et al. Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Annals of Glaciology, 2014, 55(66):151-155.

姚晓军, 刘时银, 郭万钦, 等.近50a来中国阿尔泰山冰川变化——基于中国第二次冰川编目成果.自然资源学报, 2012, 27(10):1734-1745.

Pieczonka T, Bolch T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between similar to 1975 and 1999 using Hexagon KH-9 imagery. Global and Planetary Change, 2015, 128:1-13.

秦艳, 杨太保, 冀琴, 等. 1973-2016年哈尔里克山现代冰川变化分析.兰州大学学报:自然科学版, 2018, 54(5):5-12.

徐春海, 王飞腾, 李忠勤, 等. 1972-2013年新疆玛纳斯河流域冰川变化.干旱区研究, 2016, 33(3):628-635.

Zhang Q, Chen Y, Li Z, et al. Glacier changes from 1975 to 2016 in the Aksu River Basin, Central Tianshan Mountains. Journal of Geographical Sciences, 2019, 29(6):984-1000.

Zhang Z, Xu J L, Liu S Y, et al. Glacier changes since the early 1960s, eastern Pamir, China. Journal of Mountain Science, 2016, 13(2):276-291.

Ke L, Ding X, Song C. Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sensing of Environment, 2015, 168:13-23.

胡凡盛. 1976-2016年东帕米尔-西昆仑地区冰川变化遥感监测.兰州:兰州大学, 2018.

姜珊, 杨太保, 田洪阵. 1973-2010年基于RS和GIS的马兰冰川退缩与气候变化关系研究.冰川冻土, 2012, 34(3):522-529.

姜珊.基于遥感的东昆仑山冰川和气候变化研究.兰州:兰州大学, 2012.

王凯, 杨太保, 何毅, 等.近30年阿尼玛卿山冰川与气候变化关系研究.水土保持研究, 2015, 22(3):300-303.

He J, Wang N L, Chen A A, et al. Glacier changes in the Qilian Mountains, Northwest China, between the 1960s and 2015. Water, 2019, 11(3):623.

刘凯.近20年来印度河流域冰川变化研究.西安:西北大学, 2018.

许艾文.近40年中国喀喇昆仑山冰川变化的遥感监测.兰州:兰州大学, 2017.

王利平, 谢自楚, 刘时银, 等. 1970-2000年羌塘高原冰川变化及其预测研究.冰川冻土, 2011, 33(5):979-990.

张震, 刘时银. 1970-2016年青藏高原岗扎日冰川变化与物质平衡遥感监测研究.地球信息科学学报, 2018, 20(9):1338-1349.

王聪强. 1990-2015年唐古拉山冰川对气候变化响应的研究.兰州:兰州大学, 2017.

吕卉.近40年喜马拉雅山冰川波动对气候变化的响应.兰州:兰州大学, 2013.

冀琴, 杨太保, 田洪阵, 等.念青唐古拉山西段近40年冰川与气候变化研究.干旱区资源与环境, 2014, 28(7):12-17.

Wu K, Liu S, Jiang Z, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. The Cryosphere, 2018, 12(1):103-121.

李霞.近40年横断山冰川变化的遥感监测研究.兰州:兰州大学, 2015.

Hewitt K. The Karakoram anomaly? Glacier expansion and the elevation effect, Karakoram Himalaya. Mountain Research and Development, 2005, 25(4):332-340.

Yao T, Thompson L, Yang W, et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2012, 2(9):663-667.

WGMS. Global Glacier Change Bulletin No.2 (2014-2015). Zurich: World Glacier Monitoring Service, 2017.

Gardner A S, Moholdt G, Cogley J G, et al. A reconciled estimate of glacier contributions to sea level rise:2003 to 2009. Science, 2013, 340(6134):852-857.

Neckel N, KropČek J, Bolch T, et al. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements. Environmental Research Letters, 2014, 9(9):468-475.

Wei J F, Liu S Y, Xu J L, et al. Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER image. Journal of Mountain Science, 2015, 12(2):330-343.

Pieczonka T, Bolch T, Wei J, et al. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sensing of Environment, 2013, 130:233-244.

王玉哲, 任贾文, 秦大河, 等.利用卫星资料反演区域冰川冰量变化的尝试——以祁连山为例.冰川冻土, 2013, 35(3):583-592.

Xu J, Liu S, Zhang S, et al. Recent changes in glacial area and volume on Tuanjiefeng peak region of Qilian Mountains, China. PLoS One, 2013, 8(8):e70574.

Wang Y, Hou S, Hong S, et al. Glacier extent and volume change (1966-2000) on the Su-lo Mountain in northeastern Tibetan Plateau, China. Journal of Mountain Science, 2008, 5(4):299-309.

Shangguan D, Liu S, Ding Y, et al. Changes in the elevation and extent of two glaciers along the Yanglonghe River, Qilian Shan, China. Journal of Glaciology, 2010, 56(196):309-317.

Cao B, Pan B, Wang J, et al. Changes in the glacier extent and surface elevation along the Ningchan and Shuiguan river source, eastern Qilian Mountains, China. Quaternary Research, 2014, 81(3):531-537.

Neckel N, Braun A, KropČek J, et al. Recent mass balance of Purogangri ice cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. The Cryosphere, 2013, 7(5):1623-1633.

Chen A A, Wang N, Li Z, et al. Region-wide glacier mass budgets for the Tanggula Mountains between ~1969 and ~2015 derived from remote sensing data. Arctic Antarctic & Alpine Research, 2017, 49(4):551-568.

Zhou Y, Li Z, Li J, et al. Glacier mass balance in the QinghaiTibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sensing of Environment, 2018, 210:96-112.

Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, 2013, 7(4):1263-1286.

Kaab A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 2012, 488(7412):495-498.

Zhou Y, Li Z, Li J, et al. Geodetic glacier mass balance (1975-1999) in the central Pamir using the SRTM DEM and KH-9 imagery. Journal of Glaciology, 2019, 65(250):309-320.

Maurer J M, Schaefer J M, Rupper S, et al. Acceleration of ice loss across the Himalayas over the past 40 years. Science Advance, 2019, 5(6):7266.

Wei J, Liu S, Guo W, et al. Changes in glacier volume in the North Bank of the Bangong Co Basin from 1968 to 2007 based on historical topographic maps, SRTM, and ASTER stereo images. Arctic Antarctic & Alpine Research, 2015, 47(2):301-311.

Bolch T, Pieczonka T, Mukherjee K, et al. Brief communication:Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 2017, 11(1):531-539.

Zhang Z, Liu S, Wei J, et al. Mass change of glaciers in Muztag Ata-Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data. PLoS One, 2016, 11(1):e0147327.

Scherler D, Bookhagen B, Strecker M R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 2011, 4(3):156-159.

Yang W, Guo X, Yao T, et al. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Climate Dynamics, 2016, 47(3-4):805-815.

Yao T, Xue K, Chen D, et al. Recent Third Pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment multidisciplinary approach with observations, modeling, and analysis. Bulletin of the American Meteorological Society, 2019, 100(3):423-444.

Chen Y, Li W, Deng H, et al. Changes in Central Asia's water tower:Past, present and future. Scientific Reports, 2016, 6:35458.

Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review. Global and Planetary Change, 2014, 112:79-91.

Thompson L G, Yao T, Davis M E, et al. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains. Quaternary Science Reviews, 2018, 188:1-14.

Cuo L, Zhang Y, Wang Q, et al. Climate change on the northern Tibetan Plateau during 1957-2009:spatial patterns and possible mechanism. Journal of Climate, 2013, 26(1):85-109.

Yadav R R, Gupta A K, Kotlia B S, et al. Recent wetting and glacier expansion in the northwest Himalaya and Karakoram. Scientific Reports, 2017, 7(1):6139.

Kapnick S B, Delworth T L, Ashfaq M, et al. Snowfall less sensitive to warming in Karakkoram than in Himalayas due to unique seasonal cycle. Nature Geoscience, 2014, 7(11):834-840.

Pritchard H D. Asia's shrinking glaciers protect large populations from drought stress. Nature, 2019, 569(7758):649-654.

Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature, 2017, 549(7671):257-260.

Shannon S, Smith R, Wiltshire A, et al. Global glacier volume projections under high-end climate change scenarios. The Cryosphere, 2019, 13(1):325-350.

施雅风, 刘时银.中国冰川对21世纪全球变暖响应的预估.科学通报, 2000, 45(4):434-438.

高鑫.西部冰川融水变化及其对径流的影响.兰州:中国科学院寒区旱区环境与工程研究所, 2010.

康尔泗, 程国栋, 董增川.中国西北干旱区冰雪水资源与出山径流.北京:科学出版社, 2002:14-54.

高鑫, 叶柏生, 张世强, 等. 1961-2006年塔里木河流域冰川融水变化及其对径流的影响.中国科学:地球科学, 2010, 40(5):654-665.

高鑫, 张世强, 叶柏生, 等.河西内陆河流域冰川融水近期变化.水科学进展, 2011, 22(3):344-350.

Zhang S Q, Gao X, Zhang X W. Glacial runoff likely reached peak in the mountainous areas of the Shiyang River Basin, China. Journal of Mountain Science, 2015, 12(2):382-395.

Zhang Z, Deng S, Zhao Q, et al. Projected glacier meltwater and river run-off changes in the Upper Reach of the Shule River Basin, north-eastern edge of the Tibetan Plateau. Hydrological Processes, 2019, 33(7):1059-1074.

Huss M, Hock R. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 2018, 8(2):135-140.

Lutz A F, Immerzeel W W, Shrestha A B, et al. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 2014, 4(7):587-592.

杨针娘.中国冰川水资源.兰州:甘肃科学技术出版社, 1991:137-148.

Khan V M, Holko L. Snow cover characteristics in the Aral Sea Basin from different data sources and their relation with river runoff. Journal of Marine Systems, 2009, 76(3):254-262.

Luo Y, Wang X, Piao S, et al. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan-Pamir-North Karakoram. Scientific Reports, 2018, 8:16470.

Huss M, Farinotti D. Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research:Earth Surface, 2012, 117(F4):F04010.

Marzeion B, Jarosch A H, Hofer M. Past and future sealevel change from the surface mass balance of glaciers. The Cryosphere, 2012, 6(6):1295-1322.

Huss M, Hock R. A new model for global glacier change and sea-level rise. Frontiers in Earth Science, 2015, 3:54.

Armstrong R L, Rittger K, Brodzik M J, et al. Runoff from glacier ice and seasonal snow in High Asia:Separating melt water sources in river flow. Regional Environmental Change, 2019, 19(5):1249-1261.

Share

COinS