Bulletin of Chinese Academy of Sciences (Chinese Version)


aquaculture; genetic breeding; molecular module; genome-wide genotyping-based selective breeding

Document Type



Rapid advances in molecular basis and genetic improvement of economically important traits in fish have led to flourishing development of aquatic seed industry. Based on analyzing the origin, development, and status of fish genetic breeding in China, we mainly summarize recent progresses on complete genome sequencing, identification of molecular modules controlling complex traits including sex control, disease resistance, hypoxia tolerance, and feed efficient utilization, and breeding of a new allogynogenetic gibel carp variety supported by the Strategic Priority Program "Innovative System of Designer Breeding by Molecular Modules". Moreover, we highlight the future perspectives in modern aquatic seed industry for intensive and ecological aquaculture.

First page


Last Page





Bulletin of Chinese Academy of Sciences


桂建芳, 张晓娟.新时代水产养殖模式的变革.长江技术经济, 2018, (1):25-29.

Gui J F, Tang Q S, Li Z J, et al. Aquaculture in China: Success Stories and Modern Trends. Oxford: John Wiley & Sons, 2018: 1-677.

Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture: opportunities and challenges.[2018-08-30]. http://www.fao.org/3/a-i3720e.pdf.

Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture: contributing to food security and nutrition for all.[2018-08-30]. http://www.fao.org/3/a-i5555e.pdf.

Vance E. China's fish farms could save the oceans. Scientific American, 2015, 312(4):52-59.

桂建芳, 朱作言.水产动物重要经济性状的分子基础及其遗传改良.科学通报, 2012, 57(19):1719-1729.

桂建芳.鱼类生物学和生物技术是水产养殖可持续发展的源泉.中国科学:生命科学, 2014, 44(12):1195-1197.

桂建芳.水生生物学科学前沿及热点问题.科学通报, 2015, 60(22):2051-2057.

Embody G C, Hyford C D. The advantage of rearing brook trout fingerlings from selected breeders. Trans Am Fish Soc, 1925, 55:135-138.

Komiyama T, Kobayashi H, Tateno Y, et al. An evolutionary origin and selection process of goldfish. Gene, 2009, 430(1-2):5-11.

Wang S Y, Luo J, Murphy R W, et al. Origin of Chinese goldfish and sequential loss of genetic diversity accompanies new breeds. PLoS One, 2013, 8(3):e59571.

Zhou L, Gui J F. Applications of genetic breeding biotechnologies in Chinese aquaculture//Gui J F, Tang Q S, Li Z J, et al, eds. Aquaculture in China: Success Stories and Modern Trends. Oxford: John Wiley & Sons, 2018: 465-496.

梅洁, 桂建芳.鱼类性别异形和性别决定的遗传基础及其生物技术操控.中国科学:生命科学, 2014, 44(12):1198-1212.

代向燕, 张玮, 贺江燕, 等.鱼类生长的神经内分泌调控.中国科学:生命科学, 2014, 44(12):1213-1226.

肖武汉.低氧信号传导途径与鱼类低氧适应.中国科学:生命科学, 2014, 44(12):1227-1235.

童金苟, 孙效文.鱼类经济性状遗传解析及分子育种应用研究.中国科学:生命科学, 2014, 44(12):1262-1271.

叶鼎, 朱作言, 孙永华.鱼类基因组操作与定向育种.中国科学:生命科学, 2014, 44(12):1253-1261.

徐康, 段巍, 肖军, 等.鱼类遗传育种中生物学方法的应用及研究进展.中国科学:生命科学, 2014, 44(12):1272-1288.

Zhou L, Gui J. Natural and artificial polyploids in aquaculture. Aquaculture & Fisheries, 2017, 2:103-111.

Star B, Nederbragt A J, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system. Nature, 2011, 477(7363):207-210.

Brawand D, Wagner C E, Li Y I, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature, 2014, 513(7518):375-381.

Jiang Y, Lu J, Peatman E, et al. A pilot study for channel catfish whole genome sequencing and de novo assembly. BMC Genomics, 2011, 12:629.

Davidson W S, Koop B F, Jones S J, et al. Sequencing the genome of the Atlantic salmon ( Salmo salar). Genome Biol, 2010, 11(9):403.

Berthelot C, Brunet F, Chalopin D, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun, 2014, 5:3657.

Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet, 2014, 46(3):253-260.

Xu P, Zhang X, Wang X, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet, 2014, 46(11):1212-1219.

Wu C, Zhang D, Kan M, et al. The draft genome of the large yellow croaker reveals well-developed innate immunity. Nat Commun, 2014, 5:5227.

Ao J, Mu Y, Xiang L X, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet, 2015, 11(4):e1005118.

Wang Y, Lu Y, Zhang Y, et al. The draft genome of the grass carp ( Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet, 2015, 47(6):625-631.

桂建芳.水生生物学科学前沿及热点问题.科学通报, 2015, 60(22):2051-2057.

Chen Y, Shi M, Zhang W, et al. The grass carp genome database (GCGD):an online platform for genome features and annotations. Database, 2017, 2017:bax051.

桂建芳, 周莉.多倍体银鲫克隆多样性和双重生殖方式的遗传基础和育种应用.中国科学:生命科学, 2010, 42(2):97-103.

Zhang J, Sun M, Zhou L, et al. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci Rep, 2015, 5:10898.

Li X Y, Liu X L, Zhu Y J, et al. Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish. Heredity, 2018, 121(1):64-74.

Li X Y Zhang Q Y, Zhnag J, et al. Extra microchromosomes play male determination role in polyploid gibel carp. Genetics, 2016, 203:1415-1424.

农业部渔业渔政管理局.中国渔业统计年鉴.北京:中国农业出版社, 2017.

Huang R, Sun J X, Luo Q, et al. Genetic variations of body weight and GCRV resistance in a random mating population of grass carp. Oncotarget, 2015, 6(34):35433-35442.

Zeng X T, Chen Z Y, Deng Y S, et al. Complete genome sequence and architecture of crucian carp Carassius auratus herpesvirus (CaHV). Arch Virol, 2016, 161:3577-3581.

Gao F X, Wang Y, Zhang Q Y, et al. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes. BMC Genomics, 2017, 18(1):561

Mou C Y, Wang Y, Zhang Q Y, et al. Differential interferon system gene expression profiles in susceptible and resistant gynogenetic clones of gibel carp challenged with herpesvirus CaHV. Dev Comp Immunol, 2018, 86:52-64.

Zhang Q M, Zhao X, Li Z, et al. Alternative splicing transcripts of zebrafish LGP2 gene differentially contribute to IFN antiviral response. J Immunol, 2018, 200(2):688-703.

Feng H, Zhang Y B, Zhang Q M, et al. Zebrafish IRF1 regulates IFN antiviral response through binding to IFNϕ1 and IFNϕ3 promoters downstream of MyD88 signaling. J Immunol, 2015, 194(3):1225-1238.

Feng H, Zhang Q M, Zhang Y B, et al. Zebrafish IRF1, IRF3, and IRF7 differentially regulate IFNϕ1 and IFNϕ3 expression through assembly of homo-or heteroprotein complexes. J Immunol, 2016, 197(5):1893-1904.

Sun F, Zhang Y B, Jiang J, et al. Gig1, a novel antiviral effector involved in fish interferon response. Virology, 2014, 448:322-332.

Lu L F, Li S, Wang Z X, et al. Grass carp reovirus VP41 targets fish MITA to abrogate the interferon response. J Virol, 2017, 91(14):pii:e00390-17.

Yu Z L, Li J H, Xue N N, et al. Expression and functional characterization of PGRP6 splice variants in grass carp Ctenopharyngodon idella. Dev Comp Immunol, 2014, 47(2):264-274.

Hu Y W, Wu X M, Ren S S, et al. NOD1 deficiency impairs CD44a/Lck as well as PI3K/Akt pathway. Sci Rep, 2017, 7(1):2979.

Wu X M, Chen W Q, Hu Y W, et al. RIP2 is a critical regulator for NLRs signaling and MHC antigen presentation but not for MAPK and PI3K/Akt pathways. Front Immunol, 2018, 9:726.

Shoubridge E A, Hochachka P W. Ethanol:novel end product of vertebrate anaerobic metabolism. Science, 1980, 209:308-309.

Liu X, Cai X L, Hu B, et al. Forkhead transcription factor3a (FOXO3a) modulates hypoxia signaling via up-regulation of the von Hippel-Lindau Gene (VHL). J Biol Chem, 2016, 291(49):25692-25705.

Liu X, Chen Z, Xu C X, et al. Repression of hypoxia-inducible factor alpha signaling by Set7-mediated methylation. Nucleic Acids Res, 2015, 43(10):5081-5098.

Wang J, Zhang D W, Du J, et al. Tet1 facilitates hypoxia tolerance by stabilizing the HIF-α proteins independent of its methylcytosine dioxygenase activity. Nucleic Acids Res, 2017, 45(22):12700-12714.

Zhou L, Wang Z W, Wang Y, et al. Crucian carp and gibel carp culture//Gui J F, Tang Q S, Li Z J, et al, eds. Aquaculture in China: Success Stories and Modern Trends. Oxford: John Wiley & Sons, 2018: 149-157.