Bulletin of Chinese Academy of Sciences (Chinese Version)


geology; big data; data-intensive; data mining

Document Type



Big data has influenced the way people live and changed the method to understand and research the world. As a typical dataintensive subject, geology is facing unprecedented challenges and opportunities. In response to these challenges, geologists need not only to improve the traditional methods of research, but also to convert the intrinsic thinking patterns and embrace the big data epoch. The combination of geology and big data greatly expands the cognitive space of geology and improves the ability to acquire new knowledge of geology. At the same time, it provides new vitality for the energy mineral survey, the rational use of environmental resources and the social production and public service, which are supported by geology. On the basis of analyzing the current research status of big data in geology, this paper elaborates the frontier scientific problems of big data research in geology in China, puts forward the strategic target of the development of big data of geology, and probes into the main problems and solutions to the development of the big data of geology. Big data will change the way geologists think. The data-driven scientific discovery model will bring a new look to the development of geology. This paper calls on Chinese geological community to give more attention and support to big data.

First page


Last Page





Bulletin of Chinese Academy of Sciences


Gantz J, Reinsel D. The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East. Framingham: IDC Analyze the Future, 2012.

赵鹏大.大数据时代呼唤各科学领域的数据科学.中国科技奖励, 2014, (9):29-30.

陈建平, 李靖, 谢帅, 等.中国地质大数据研究现状.地质学刊, 2017, 41(3):353-366.

吴冲龙, 刘刚, 张夏林, 等.地质科学大数据及其利用的若干问题探讨.科学通报, 2016, 61(16):1797-1807.

王登红, 刘新星, 刘丽君.地质大数据的特点及其在成矿规律、成矿系列研究中的应用.矿床地质, 2015, 34(6):1143-1154.

谭永杰, 文敏, 朱月琴, 等.地质数据的大数据特性研究.中国矿业, 2017, 26(9):67-71.

张旗, 周永章.大数据正在引发地球科学领域一场深刻的革命——《地质科学》 2017年大数据专题代序.地质科学, 2017, 52(3):637-648.

郭华东, 王力哲, 陈方, 等.科学大数据与数字地球.科学通报, 2014, 59(12):1047-1054.

龚健雅, 李小龙, 吴华意.实时GIS时空数据模型.测绘学报, 2014, (3):226-232.

陈建平, 李婧, 崔宁, 等.大数据背景下地质云的构建与应用.地质通报, 2015, 34(7):1260-1265.

吴冲龙, 刘刚. "玻璃地球"建设的现状、问题、趋势与对策.地质通报, 2015, 34(7):1280-1287.

周永章, 陈烁, 张旗, 等.大数据与数学地球科学研究进展——大数据与数学地球科学专题代序.岩石学报, 2018, 34(2):255-263.

Han J. Data Mining:Concepts and Techniques. San Francisco:Morgan Kaufmann Publishers, 2005.

李德仁, 张良培, 夏桂松.遥感大数据自动分析与数据挖掘.测绘学报, 2014, 43(12):1211-1216.

周永章, 黎培兴, 王树功, 等.矿床大数据及智能矿床模型研究背景与进展.矿物岩石地球化学通报, 2017, 36(2):327-331.

李超岭, 李健强, 张宏春, 等.智能地质调查大数据应用体系架构与关键技术.地质通报, 2015, 34(7):1288-1299.

于萍萍, 陈建平, 柴福山, 等.基于地质大数据理念的模型驱动矿产资源定量预测.地质通报, 2015, 34(7):1333-1343.

Han J, Tung A K H, He J. SPARC: Spatial Association Rule-Based Classification. In: Data Mining for Scientific and Engineering Applications. New York: Springer US, 2001: 461-485.

吴冲龙, 何珍文, 翁正平, 等.地质数据三维可视化的属性、分类和关键技术.地质通报, 2011, 30(5):642-649.

赵节霞, 邹毅.三维可视化技术在数字矿山中的应用研究.矿山测量, 2015, (2):3-5.