Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
Earth observation (EO) data; opening and sharing; data governance system; data sharing ecosystem; data sharing model
Document Type
Article
Abstract
Earth observation (EO) data, as the basic and strategic resource of a country, plays an important role in national economy, social development, and defense security, and a new era opportunity of the transition from a "great country of data" to a "strong country of data" is coming to China. This paper summarizes the existing conditions and recent trends of opening and sharing of EO data from both international and domestic perspectives, and then analyzes the problems and challenges of opening and sharing EO data in China. Finally, three suggestions are proposed to promote the opening and sharing of China's EO data, namely, (1) the construction of data governance system needs to be strengthened to consolidate the foundation for opening and sharing EO data; (2) a sustainable data sharing ecosystem needs to be maintained from regulation and technology; (3) the innovative service modes of data sharing should be created to deepen the application of EO data. By strengthening the data opening and sharing, the potential value of China's EO big data can be discovered and the strategic role of EO data can be fully motivated. Therefore, the international competitiveness of China's big EO data will be effectively enhanced.
First page
783
Last Page
790
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
郭华东.大数据大科学大发现——大数据与科学发现国际研讨会综述.中国科学院院刊, 2014, 29(4):500-506.
郭华东.地球系统空间观测:从科学卫星到月基平台.遥感学报, 2016, 20(5):716-723.
李德仁.展望大数据时代的地球空间信息学.测绘学报, 2016, 45(4):379-384.
何国金, 王力哲, 马艳, 等.对地观测大数据处理:挑战与思考.科学通报, 2015, 60:470-480.
United Nations Office for Outer Space Affairs. [2018-06-18]. https://www.unoosa.org/.
Pixalytics. Specialises in the transition of academic knowledge to commercial opportunity and public understanding. [2018-06-18]. https://www.pixalytics.com.
Safyan M. Planet to launch record-breaking 88 satellites. [2017-02-03]. https://www.planet.com/pulse/record-breaking-88-satellites.
Jean N, Burke M, Xie M, et al. Combining satellite imagery and machine learning to predict poverty. Science, 2016, 353(6301):790-794.
Hansen M C, Potapov P V, Moore R, et al. High-resolution global maps of 21st-century forest cover change. Science, 2013, 342(6160):850-853.
Wulder M A, Coops N C. Satellites:Make Earth observations open access. Nature, 2014, 513(7516):30-31.
Pekel J-F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes. Nature, 2016, 540(7633):418-422.
Guo H. Steps to the digital Silk Road. Nature, 2018, 554(7690):25-27.
Williamson R A. The landsat legacy:Remote sensing policy and the development of commercial remote sensing. Photogrammetric Engineering & Remote Sensing, 1997, 63(7):877-885.
Gabrynowicz J I. The land remote sensing laws and policies of national governments: A global survey. [2007-02-03]. http://www.spacelaw.olemiss.edu/resources/pdfs/noaa.pdf.
涂子沛.大数据:正在带来的数据革命, 以及它如何改变政府、商业与我们的生活.桂林:广西师范大学出版社, 2012.
ESA. Revised ESA Earth observation data policy. [2010-05-01]. https://earth.esa.int/web/guest/-/revised-esa-earth-observationdata-policy-7098.
Jutz S, Milagro-Pérez M P. Copernicus program. Reference Module in Earth Systems and Environmental Sciences, 2018, 1:150-191.
Asrar G, Tilford S G, Butler D M. Mission to Planet earth:Earth observing system. Palaeogeography, Palaeoclimatolofy, Palaeoecology, 1992, 98(1):3-8.
King, M D, Plantnick. The Earth Observing System (EOS). Comprehensive Remote Sensing, 2018, 1:7-26.
Meyer T, Suresh R, Ilg D, et al. Mosaic, HDF and EOSDIS:providing access to earth sciences data. Computer Networks and ISDN Systems, 1995, 28(1-2):221-229.
Savtchenko A, Ouzounov D, Ahmad S, et al. Terra and Aqua MODIS products available from NASA GES DAAC. Advances in Space Research, 2004, 34: 710-714.
USGS. U. S. Landsat Analysis Ready Data (ARD). [2018-06-20]. https: //landsat. usgs. gov/ard.
USGS. U. S. Landsat Analysis Ready Data (ARD) Data Format Contorl Book (DFCB). [2017-12-01]. https://landsat.usgs.gov/ard.
Ryder P, Stel J H. An introduction to the Global Monitoring for Environment and Security(GMES) initiative. Elsevier Oceanography Series, 2003, 69:622-666.
周成虎, 欧阳, 李增元.我国遥感数据的集成与共享研究.中国工程科学, 2008, 10(6):51-55.
GEO. GEO strategic plan 2016-2025: implementing GEOSS. [2018-06-20]. https://www.earthobservations.org/documents/GEO_Strategic_Plan_2016_2025_Implementing_GEOSS.pdf.
GEO. Geohazard supersites and Natural Laboratories(GSNL) initiative "supersites definitions". [2018-06-20]. https://www.earthobservations.org/gsnl_docs.php.
顾行发, 余涛, 田国良, 等. 40年的跨越——中国航天遥感蓬勃发展中的"三大战役".遥感学报, 2016, 20(5):781-793.
Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine:Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 2017, 202:18-27.
Lewis A, Oliver S, Lymburner L, et al. The Australian geoscience Data Cube-Foundations and lessons learned. Remote Sensing of Environment, 2017, 202:276-292.
Guo H. Big Earth data:A new frontier in Earth and information sciences. Big Earth Data, 2017, 1:4-20.
冯华, 余建斌. 奔向下一个太空"拥抱". 人民日报, 2018-04-24.
中国资源卫星应用中心陆地观测卫星数据服务平台. [2018-06-20]. http://218.247.138.119:7777/DSSPlatform/index.html.
赵竹青. 一箭三星!我国首个民用"高分"遥感星座建成. [2018-03-31]. http://scitech.people.com.cn/n1/2018/0331/c1007-29900408.html.
李国庆, 张红月, 张连翀, 等.地球观测数据共享的发展和趋势.遥感学报. 2016, 20(5):979-990.
He G, Zhang Z, Jiao W, et al. Generation of ready to use (RTU) products over China based on Landsat series data. Big Earth Data, 2018, 2(1):56-64.
国务院. 国务院关于印发促进大数据发展行动纲要的通知. [2015-09-05]. http://www.gov.cn/zhengce/content/2015-09/05/content_10137.htm.
国务院. 国务院办公厅印发《科学数据管理办法》. [2018-04-02]. http://www.gov.cn/xinwen/2018-04/02/content_5279295.htm.
国家测绘地理信息局. 遥感影像公开使用管理规定(试行). [2011-12-06]. http://files.ngcc.sbsm.gov.cn/www/201206/20120611091831349.pdf.
Stuart D, Baynes G, Hrynaszkiewicz, et al. Whitepaper: Practical challenges for researchers in data sharing. [2018-03-21]. https://doi.org/10.6084/m9.figshare.5996786.
Wilkinson M, Dumontier M, Aalbersberg I, et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 2016, 3:160018.
国务院. 国务院办公厅关于印发政务信息系统整合共享实施方案的通知. [2017-05-18]. http://www.gov.cn/zhengce/content/2017-05/18/content_5194971.htm.
国家发展改革委, 中央网信办. 关于印发《政务信息资源目录编制指南(试行)》的通知. [2017-06-30]. http://www.ndrc.gov.cn/zcfb/zcfbtz/201707/t20170713_854530.html.
梅宏. 梅宏院士建议优先推进数据资源建设(附全文). [2018-06-20]. http://www.sohu.com/a/229147553_358040.
中国信息通信研究院. 大数据白皮书(2018年). [2018-06-26]. http://www.cac.gov.cn/2018-04/25/c_1122741894.htm.
Recommended Citation
Guojin, HE; Guizhou, WANG; Tengfei, LONG; Yan, PENG; Wei, JIANG; Ranyu, YIN; Weili, JIAO; and Zhaoming, ZHANG
(2018)
"Opening and Sharing of Big Earth Observation Data: Challenges and Countermeasures,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 33
:
Iss.
8
, Article 3.
DOI: https://doi.org/10.16418/j.issn.1000-3045.2018.08.003
Available at:
https://bulletinofcas.researchcommons.org/journal/vol33/iss8/3