Bulletin of Chinese Academy of Sciences (Chinese Version)


space science; scientific big data; planning proposal

Document Type



Space science is a discipline with high innovation orientation and frontier intersection. Countries all over the world attach great importance to it and have promoted a series of strategic planning and major programs. The age of big data in space science has arrived. In this study, the main trends of big data development in space science are expounded. Specifically, space scientific data volumes are exploding, data storage and management are valued, the scientific research paradigm is shifting, big data technology and tools are booming, the intelligent application is budding and a benign research ecosystem of big data has been formed. Based on the development requirements and national strategic planning, this study analyzes the specific challenges and development opportunities of big data in space science. An all-out efforts should be made, from the perspectives of data sharing, data long-term storage, big data infrastructure construction, disruptive technologies breakthrough and research ecosystem construction, to promote the open and sharing of scientific data, to expand intellectual innovation and scientific and technological output, and to create a new era for the development of space science.

First page


Last Page





Bulletin of Chinese Academy of Sciences


吴季. 2016-2030年空间科学规划研究报告.北京:科学出版社, 2016.

Space Weather Operations, Research, and Mitigation (SWORM) Task Force Co-Chairs. National Space Weather Strategy. [2018-08-04]. https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/final_nationalspaceweatherstrategy_20151028.pdf.

International Space Exploration Coordination Group. Global exploration roadmap. [2017-01-05]. https://www.nasa.gov/sites/default/files/files/GER-2013_Small.pdf.

European Space Agency. Space science for Europe 2015-2025. [2017-01-05]. http://www.esa.int/esapub/br/br247/br247.pdf.

尤亮, 白青江, 孙丽琳, 等.世界主要空间国家空间科学发展态势综述.中国科学院院刊, 2015, 30(6):740-750.

Wang C. New chains of space weather monitoring stations in China. Bulletin of the Chinese Academy of Sciences, 2013, 27(1):35-40.

王赤, 任丽文.日地空间探索之旅——空间物理探测最新进展与展望(下).国际太空, 2015(02):82-86.

范全林.基于子午工程的国际空间天气子午圈计划.中国科学基金, 2008(2):65-69.

Collaboration D, Ambrosi G, An Q, et al. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature, 2017, 552(7683):63-66.

Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549(7670):43-49.

Liao S K, Yong H L, Liu C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nature Photonics, 2017, 11(8):509-518.

Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356(6343):1180-1184.

Li T P, Xiong S L, Zhang S N, et al. Insight-HXMT observations of the first binary neutron star merger GW170817. Science China (Physics, Mechanics & Astronomy), 2018, 61(3):031011.

Hey T. The fourth paradigm-data-intensive scientific discovery. Proceedings of the IEEE, 2011, 99(8):1334-1337.

Shallue C J, Vanderburg A. Identifying exoplanets with deep learning:a five planet resonant chain around Kepler-80 and an eighth planet around Kepler-90. Astronomical Journal, 2017, 155(2):94.

Camporeale E, Wing S, Johnson J R. Machine learning techniques for space weather. Amsterdam:Elsevier, 2018.

Sutcliffe P R. Substorm onset identification using neural networks and Pi2 pulsations. Annales Geophysicae, 1997, 15(10):1257-1264.

Bobra M G, Ilonidis S. Predicting coronal mass ejections using machine learning methods. Astrophysical Journal, 2016, 821(2):127.

Jonas E, Bobra M, Shankar V, et al. Flare prediction using photospheric and coronal image data. Solar Physics, 2018, 293(3):48.

Vandegriff J, Wagstaff K, Ho G, et al. Forecasting space weather:Predicting interplanetary shocks using neural networks. Advances in Space Research, 2005, 36(12):2323-2327.

邹自明, 佟继周, 熊森林, 等.大数据时代空间科学领域的科研信息化实践与成果.大数据, 2016, 2(6):83-96.

魏奉思."数字空间"是空间科技战略新高地.河南科技, 2016, (19):7-7.

康栋贺, 邹自明, 胡晓彦, 等.支持时空耦合计算的HTM-ST日地空间系统数据组织模型.地球信息科学学报, 2017, 19(6):735-743.

王天真. 智能融合数据挖掘方法及其应用. 上海: 上海海事大学, 2006.