Bulletin of Chinese Academy of Sciences (Chinese Version)


gene editing; recombinant nuclease; CRISPR/Cas9; DNA-mediated gene editing

Document Type



Gene editing includes genetic manipulations like deletion, replacement, insertion, etc., which aims to obtain new gene functions, phenotypes, and even new species. As a burgeoning field of life science, gene editing has brought genetic manipulation into an unprecedented grand state. Here, we summary the developments of the technologies in gene editing, and the challenges and opportunities we currently facing, which aims to deepen the comprehension of this technique systems, and help to find breakpoints of this field.

First page


Last Page





Bulletin of Chinese Academy of Sciences


Martin G M, Smith A C, Ketterer D J, et al. Increased chromosomal aberrations in first metaphases of cells isolated from the kidneys of aged mice. Isr J Med Sci, 1985, 21(3):296-301.

Lieber M R, Karanjawala Z E. Ageing, repetitive genomes and DNA damage. Nat Rev Mol Cell Biol, 2004, 5(1):69-75.

Lieber M R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem, 2010, 79:181-211.

Chang H H Y, Pannunzio N R, Adachi N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol, 2017, 18(8):495-506.

Paques F, Haber J E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 1999, 63(2):349-404.

Sung P, Klein H. Mechanism of homologous recombination:mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol, 2006, 7(10):739-750.

Hartlerode A J, Scully R. Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J, 2009, 423(2):157-168.

Lieber M R, Ma Y, Pannicke U, et al. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol, 2003, 4(9):712-720.

Lee A H, Symington L S, Fidock D A. DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol Mol Biol Rev, 2014, 78(3):469-486.

Capecchi M R. Altering the genome by homologous recombination. Science, 1989, 244(4910):1288-1292.

Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. J Mol Biol, 2016, 428(5):963-989.

Remy S, Tesson L, Menoret S, et al. Zinc-finger nucleases:a powerful tool for genetic engineering of animals. Transgenic Res, 2010, 19(3):363-371.

Bibikova M, Carroll D, Segal D J, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol, 2001, 21(1):289-297.

Nishimasu H, Ran F A, Hsu P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5):935-949.

Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962):167-170.

Mali P, Esvelt K M, Church G M. Cas9 as a versatile tool for engineering biology. Nat Methods, 2013, 10(10):957-963.

Jinek M, Chylinski K, Fonfara I, et al. A programmable dualRNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096):816-821.

Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121):823-826.

Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121):819-823.

Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013, 31(3):230-232.

Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. ELife, 2013, 2:e00471.

Ran F A, Hsu P D, Lin C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6):1380-1389.

Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokⅠ nuclease improves the specificity of genome modification. Nat Biotechnol, 2014, 32(6):577-582.

Komor A C, Kim Y B, Packer M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603):420-424.

Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353(6305), doi:10.1126/science.aaf8729.

Ma Y, Zhang J, Yin W, et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature methods, 2016, 13(12):1029-1035.

Gaudelli N M, Komor A C, Rees H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681):464-471.

Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5):1173-1183.

Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2):442-451.

Zetsche B, Gootenberg J S, Abudayyeh O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3):759-771.

Li X, Wang Y, Liu Y, et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol, 2018, 36(4):324-327.

Abudayyeh O O, Gootenberg J S, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353(6299), doi:10.1126/science. aaf5573.

Abudayyeh O O, Gootenberg J S, Essletzbichler P, et al. RNA targeting with CRISPR-Cas13. Nature, 2017, 550(7675):280-284.

Gootenberg J S, Abudayyeh O O, Lee J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336):438-442.

Smargon A A, Cox D B T, Pyzocha N K, et al. Cas13bis a Type Ⅵ-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell, 2017, 65(4):618-630.

Yan W X, Chong S R, Zhang H B, et al. Cas13d is a compact RNA-targeting Type Ⅵ CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell, 2018, 70(2):327-339.

Xu S, Cao S S, Zou B J, et al. An alternative novel tool for DNA editing without target sequence limitation:the structure-guided nuclease. Genome Biol, 2016, 17(1):186.

Dymond J S, Richardson S M, Coombes C E, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365):471-476.

Jones S. SCRaMbLE does the yeast genome shuffle. Nat Biotechnol, 2018, 36(6):503-503.

Blount B A, Gowers G O F, Ho J C H, et al. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun, 2018, 9(1):1932.

Jia B, Wu Y, Li B Z, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nat Commun, 2018, 9(1):1933.

Shen M J, Wu Y, Yang K, et al. Heterozygous diploid and interspecies SCRaMbLEing. Nat Commun, 2018, 9(1):1934.

Wu Y, Zhu R Y, Mitchell L A, et al. In vitro DNA SCRaMbLE. Nat Commun, 2018, 9(1):1935.

Liu W, Luo Z Q, Wang Y, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nat Commun, 2018, 9(1):1936.

Luo Z Q, Wang L H, Wang Y, et al. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nat Commun, 2018, 9(1):1930.

Hochrein L, Mitchell L A, Schulz K, et al. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast. Nat Commun, 2018, 9(1):1931.

Boeke J D, Church G, Hessel A, et al. The Genome Project-Write. Science, 2016, 353(6295):126-127.